
Ulli
PB96-149802 NTIS

Information Is our business.

DISTRIBUTING BACKWARD-CHAINING DEDUCTIONS
TO MULTIPLE PROCESSORS

mm 139
"•4 (fg

"t

STANFORD UNIV., CA

APR 88

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

April 1988 Report No. STAN-CS-88-1224

Thesis

PB96-149802

Distributing Backward-Chaining Deductions
to Multiple Processors

by

Vineet Singh

Department of Computer Science

Stanford University

Stanford, California 94305

REPRODUCED BY: NTtS
U.S. Department of Commerce

National Technical Information Service
Springfield, Virginia 22161

DISTRIBUTING

BACKWARD-CHAINING DEDUCTIONS

TO
MULTIPLE PROCESSORS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Vineet Singh

April 1988

© Copyright 1988

by

Vineet Singh

NTIS it authorized to reproduce and sell this
report Permission lor further reproduction
must be obtained from the copyright owner.

11

PB96-149802
SECURITY CLASSIFICATION OF T>-'S PAGE

REPORT DOCUMENTATION PAGE
Form Approved
OMBNo 07040188
Exp Date Jun30. 1986

la REPORT SECURITY CLASSIFICATION

2a SECURITY CLASSIFICATION AUTHORITY

2b OECLASSIFICATION/DOWNGRADING SCHEDULE

lb RESTRICTIVE MARKINGS

3. DISTRIBUTION/AVAILABILITY OF REPORT

Unlimited distribution

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

STAN-CS-88-1224
5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION
Computer Science Department
Stanford University

6b OFFICE SYMBOL
(If applicable)

7a NAME OF MONITORING ORGANIZATION

6c. ADDRESS (Gry. Star*, and ZIP Code)

Stanford, CA 94305

7b ADDRESS (City. Statt, and ZIP Code)

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

DARPA

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
N00039-83-C-0136
N00039-86-C-0033

8c. ADDRESS (City. State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO.

PROJECT
NO

11 TITLE (Include Security Classification)

Distributing Backward-Chaining Deductions to Multiple Processors

TASK
NO

WORK UNIT
ACCESSION NO

12 PERSONAL AUTHOR(S)

Vineet Singh

13a TYPE OF REPORT :3b TIME COVERED
FROM TO

14. DATE OF REPORT (Year, Month, Day)

1988, April, 28
16 SUPPLEMENTARY NOTATION

15 PAGE COUNT

220

17 COSATI CODES

FIELD GROUP SUB-GROUP
18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

19 ABSTRACT [Continue on reverse if necessary

It is widely believed that
advance in computing speed. -In
such problems are addressed in
that exploits desirable types o
map the parallel computation to

The thesis presents a para
with Horn clauses. For the tar
among existing execution models
or-parallelism, and-parallelism

The target class of multip
bitrary number of MIMD processo
global memory; (3) processors c
message delay is a function of

and identify by block number)

parallel computation will be the basis for the next major
reality, many difficult problems remain to be solved. Two

this thesis: (1) the design of a parallel execution model
f parallelism; and (2) the design of a resource allocator to
hardware resources for processing, storage, and communication,
llel execution model called PM for backward-chaining deduction
get multiprocessor class, PM can exploit the most parallelism
that use data-driven control. In particular, PM can exploit
and pipelining,

rocessors has the following properties: (1) there are an ar-
rs; (2) each processor has some local memory but there is no
an communicate only by sending messages to each other; (4)
the amount of data in the message and the distance between

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

£3 UNCLASSIFIED/UNLIMITED D SAME AS RPT. □ QTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL-

21 ABSTRACT SECURITY CLASSIFICATION

22b. TELEPHONE (Include Area Code)

DD FORM 1473. 84 MAR 83 APR edition may be used until exhausted
All other editions are obsolete

22c OFFICE SYMBOL

SECURITY CLASSIFICATION QF THJS PAGE

19. Continued

source and destination; and (5) each processor can perform backward-chaining deductions
based on the subset of the program that it contains.

The proposed allocation strategy is used at compile-time and applies to any application
and multiprocessor (in the target multiprocessor class). However, it needs some restrictions
that PM does not require. First, the type of backward-chaining deduction is restricted.
In particular, no recursive clauses are allowed, unit clauses must be ground, and certain
probabilistic uniformity and independence assumptions must apply. Second, a partitioning
of the database is assumed to be given.

The allocator consists of a greedy allocation phase followed by a local minimization
phase. Both greedy allocation and local minimization are based on a formally defined cost
function that quantifies intuitive notions of undesirable allocations. Algorithms are
presented for the efficient computation and recomputation of this cost function.

Considerable speedups are obtained by using this allocation strategy. These speedups
compare favorably with an unreachable upper bound and speedups obtained using random allo-

cations.

Abstract

It is widely believed that parallel computation will be the basis for the next major

advance in computing speed. In reality, many difficult problems remain to be solved.

Two such problems are addressed in this thesis: (1) the design of a parallel execution

model that exploits desirable types of parallelism; and (2) the design of a resource

allocator to map the parallel computation to hardware resources for processing,

storage, and communication.

The thesis presents a parallel execution model called PM for backward-chaining

deduction with Horn clauses. For the target multiprocessor class, PM can exploit

the most parallelism among existing execution models that use data-driven control.

In particular, PM can exploit or-parallelism, and-parallelism, and pipelining.

The target class of multiprocessors has the following properties: (1) there are an

arbitrary number of MIMD processors; (2) each processor has some local memory

but there is no global memory; (3) processors can communicate only by sending

messages to each other; (4) message delay is a function of the amount of data in the

message and the distance between source and destination; and (5) each processor

can perform backward-chaining deductions based on the subset of the program that

it contains.

The proposed allocation strategy is used at compile-time and applies to any

application and multiprocessor (in the target multiprocessor class). However, it

needs some restrictions that PM does not require. First, the type of backward-

chaining deduction is restricted. In particular, no recursive clauses are allowed,

unit clauses must be ground, and certain probabilistic uniformity and independence

assumptions must apply. Second, a partitioning of the database is assumed to be

given.

The allocator consists of a greedy allocation phase followed by a local minimiza-

tion phase. Both greedy allocation and local minimization are based on a formally

defined cost function that quantifies intuitive notions of undesirable allocations. Al-

gorithms are presented for the efficient computation and recomputation of this cost

function.

Considerable speedups are obtained by using this allocation strategy. These

speedups compare favorably with an unreachable upper bound and speedups ob-

tained using random allocations.

VI

Acknowledgements

I would like to thank Mike Genesereth (my principal adviser) for helping me be-

come a better scientist. Interaction with members of Mike's Logic group (past and

present) helped me a great deal in clarifying my ideas. I would like to single out

Narinder Singh for his contributions.

I am grateful to the people at Fairchild Artificial Intelligence Research and later

at Schlumberger Palo Alto Research for the use of their facilities, their financial

support, and the interaction with some very talented individuals. Working with

the FAIM multiprocessor group allowed me to test out my ideas in a more concrete

setting. I would especially like to thank Al Davis and Bob Hon for their feedback.

I would also like to thank the rest of the members of my PhD committees—Ernst

Mayr, Daniel Weise, and Thomas Kailath. Ernst Mayr, in particular, sparked many

new ideas for my thesis as well as pre-thesis research.

My parents deserve credit for their early encouragement of my academic pursuits.

I have always valued their support.

Finally, the biggest share of thanks must go to Kathy, my wife, for helping me

have a wonderful time while I was working on my PhD.

vii

Contents

Abstract v

Acknowledgements vu

1 Introduction *

1.1 Motivation 1

1.2 Backward-Chaining Deduction 2

1.3 Types of Parallelism 6

1.4 Parallel Execution Models 7

1.5 Target Multiprocessor Class 1°

1.6 The Allocation Problem 12

1.7 Allocation Strategy 14

1.8 Organization of Document 16

2 PM: A Parallel Execution Model 19

2.1 Introduction 1"

2.2 The Approach 20

2.3 Basic Execution Model • •• • 23

2.3.1 Notation and Definitions 24

2.3.2 Behavioral Description 25

2.3.3 Proof of Correctness 34

2.3.4 Algorithmic Details 38

2.3.5 A Complete Example 47

viii

2.3.6 Remarks on Efficiency 52

2.4 Extensions to Basic Model 55

2.4.1 Handling Storage Constraints 55

2.4.2 Handling Non-Ground Bindings 59

2.4.3 Handling Multiple Copies 59

2.5 Discussion 62

2.6 Conclusions 64

Cost Function 55

3.1 Definition of Cost Function 65

3.1.1 Preliminary Definitions 65

3.1.2 Assumptions 66

3.1.3 Cost Function 69

3.1.4 Communication Cost Function 71

3.1.5 Processor Multiplexing Cost Function 74

3.2 Strategy for Computing Cost Function 76

3.3 Communication Cost Computation 81

3.3.1 Specification of Communication Estimation Algorithm 82

3.3.2 Goals as Filters 83

3.3.3 Probability of Unification 86

3.3.4 Compile-time Messages 89

3.3.5 Communication Estimation Algorithm (No Duplicates) ... 91

3.3.6 Strategy for Dealing with Duplicate Solutions 100

3.3.7 Communication Estimation Algorithm (with Duplicates) . . . 102

3.3.8 Complexity m

3.4 Processor Multiplexing Cost Computation 112

3.4.1 Cost Model H3

3.4.2 Processing Interval Assignment Algorithm 113

3.4.3 Processor Multiplexing Cost Computation Algorithm 118

3.4.4 Complexity 120

3.5 Summary ^23

ix

4 Allocation Algorithms 125

4.1 Greedy Allocation 125

4.1.1 Specifications 126

4.1.2 Algorithm 126

4.1.3 Complexity 130

4.1.4 Not Locally Optimal 132

4.2 Local Minimization 132

4.2.1 Specifications 132

4.2.2 Algorithm 133

4.2.3 Complexity 135

4.2.4 Not Globally Optimal 136

4.3 Experimental Results 136

4.4 Related Work 143

4.4.1 Theoretical work 143

4.4.2 Local Search 143

4.4.3 Compile-time Allocation for Dataflow 144

4.4.4 Kemal Oflazer's Thesis on Partitioning of Production Systems 147

4.4.5 Compile-time Allocation of Actor Languages 148

4.4.6 Run-time Allocation 148

4.4.7 Programmed Allocation 149

4.5 Conclusions 150

5 Conclusions 151

5.1 Summary of Key Ideas 151

5.2 Directions for Future Research 154

A Partial Order Algorithm 157

A.l Definitions 157

A.2 Assumption 158

A.3 Algorithm 158

A.4 Another Example 16°

x

B Details of Procedure PMCCA-1 163

B.l PQ-list Data Structure 163

B.2 Procedure InsertPI 164

B.3 Procedure DektePI 164

C Greedy Allocation is not Locally Optimal 167

D Local Minimization is not Globally Optimal 171

E Adder Example 175

E.l Syntax and Notation 175

E.2 Adder Database 176

E.2.1 Adder Database at Run-Time 176

E.2.2 Adder Database at Compile-Time 186

E.3 Goal 187

E.3.1 Goal at Run-Time 187

E.3.2 Goal at Compile-Time 187

E.4 Domain Information 188

E.5 Partitioning Database 188

E.6 Multiprocessor Characteristics 190

E.6.1 Size of Multiprocessor 190

E.6.2 Processing Parameters 191

E.6.3 Communication Parameters 192

E.7 Allocation Database 192

E.7.1 Allocation Database for Single Copy Case 192

E.7.2 Allocation Database for Multiple Copy Case 194

XI

List of Tables

1 Probabilities of Unification 87

2 Complexity Results for Communication Cost Computation Ill

3 Complexity Results for Processor Multiplexing Cost Computation . 121

4 Complexity Results for Greedy Allocation 130

5 Complexity Results for Local Minimization 135

xu

List of Figures

1 A Syntactic And-Or Tree 5

2 A Parallel Execution Model 9

3 E-3 Processing Surface for FAIM-1 12

4 Allocator Strategy Ig

5 Example DAGs 22

6 Types of Processes and Channels 26

7 A Normal Process 27

8 A Head Process 27

9 A Tail Process 27

10 Filtering Substitutions 29

11 Reduction of Goals 39

12 Example of Goal Reduction 32

13 Top Level Goal 09

14 An Example Database 47

15 Graphical Abbreviation for Dataflow* Graphs 48

16 Dataflow* Graph for Example 50

17 Some Abbreviated Task Descriptions 51

18 Handling Long Streams 53

19 Handling Non-Ground Bindings 60

20 Handling Multiple Copies 61

21 Parallelism Profile of a Computation 70

22 Partitioned Dataflow* Graph 72

23 Processor Load Function 76

xiii

24 Compile-time Database 78

25 Compile-time Computation 79

26 Exponential Savings at Compile-time 80

27 Predicting Communication 85

28 Estimating Number of Solutions for Prolog 88

29 Example Database 92

30 Dataflow* Graph for Simulated Deduction 93

31 A Conjunctive Goal 102

32 Procedure GreedyAUocation 128

33 Procedure LocalMinimization 134

34 Parallelism Profile for Adder Example 138

35 Speedup vs. Delay for Random Allocation 142

36 Procedure InsertPI 165

37 Procedure DeletePI 166

38 A Dataflow* Graph 168

39 A Processor Topology I68

40 A Dataflow* Graph I72

41 A Processor Topology 172

42 E-5 Processing Surface for FAIM-1 191

xiv

Chapter 1

Introduction

1.1 Motivation

It is widely believed that parallel computation will be the basis for the next major

advance in computing speed [45]. However, several difficult problems need to be

solved. Two of these problems are addressed in this dissertation. The first problem

is the design of execution models, or interpreters, that allow desirable types of

parallelism to be exploited for certain types of computations. The second problem

is the design of a resource allocator to map the parallel computation to hardware

resources for processing, storage, and communication.

Optimal allocation is ruled out as a viable option because even simplistic com-

putation and multiprocessor models make the problem NP-complete or worse [43].

A practical strategy must have the following characteristics: (1) hard limits on re-

sources must be observed, (2) trade-offs must be made among the three types of

hardware resources for processing, storage, and communication, and (3) the algo-

rithms used for accomplishing resource allocation must themselves be reasonably

efficient.

The type of computation being considered in this thesis is backward-chaining

deduction [6]. This is the type of deduction employed in most extant logic program-

ming languages. Prolog is a prime example.

2 CHAPTER 1. INTRODUCTION

Logical deduction is particularly attractive as a starting point for exploiting

parallelism because (1) it has a well understood semantics that is completely inde-

pendent of any computer architecture, be it sequential or parallel, and (2) it is not

necessary for the programmer to be burdened with explicitly specifying the par-

allelism or for the interpreter/compiler to use complex techniques to uncover the

parallelism. These two advantages together imply that the programmer can pro-

gram approximately as he would with a sequential computer. We say approximately

because optional pragmas (or hints) may be given by the programmer to increase

the efficiency of parallel execution. This is analogous to the situation in which the

programmer may do some explicit memory allocation/deallocation and leave most

of the memory reclamation task to the garbage collector.

The rest of this chapter is organized as follows. Section 1.2 describes backward-

chaining deduction. The next two sections describe the types of parallelism that can

be exploited for this computation (section 1.3) and what is necessary to describe a

parallel execution model (section 1.4). Section 1.5 describes the class of multipro-

cessors considered in this thesis and gives some background on FAIM-1, the specific

multiprocessor that was used for experimentation. Section 1.6 gives the definition

of the allocation problem and some background on previous allocation research.

Section 1.7 describes the overall structure of the allocator that is described in detail

later in the thesis. Finally, the last section presents the overall structure of the rest

of the chapters in this thesis.

1.2 Backward-Chaining Deduction

Backward-chaining [6] is an inference mechanism for automated deduction. It is

used here in the context of a database of Horn clauses. An example of a Horn

clause is:

H :- Tl,T2,...,Tn

where H and all Ti are positive literals (i.e., relation symbols with a list of terms).

A term is a constant, a variable or a function of some terms. All variable names

1.2. BACKWARD-CHAINING DEDUCTION 3

will start with an uppercase letter. All constants, function symbols and predicate

symbols will start with a lowercase letter. H is also called the head of the rule and

the set T1,T2,... ,Tn is called the tail of the rule. The meaning of the above Horn
clause is:

H is true if all of T1,T2,... ,and Tn are true.

By definition, if H is non-null, the clause is called an assertion (or fact) when n

is zero and it is called a rule when n is greater than 0. If H is null, the clause is

called a goal. For example,

:- G1,G2,.. .,G77i

is a goal with m literals. The meaning of this Horn clause is that the conjunction

given below needs to be solved.

G1AG2A...AGTO

Solving a goal means proving it true or false (in the sense of logical implication).

If the goal is true, then values of the variables in the goal that make it true must

be given. The value of a variable is called a binding. A set of values for a set of

variables is called a substitution.

An and-or tree is a problem reduction representation [7] used to represent the

problem of proving a goal by backward-chaining. Figure 1 shows an example of

a syntactic and-or tree used to represent a backward-chaining deduction. In this

figure, ovals denote or-nodes and boxes denote and-nodes. And-nodes get their

name because the goal they represent is one conjunct in a conjunctive goal set.

Similarly, or-nodes represent a disjunct in a disjunctive goal set. Nilsson [48] gives

a more formal characterization of and-or trees. Arcs are marked with the number

of the clause used for the reduction. Also, a cut through the arcs going from a node

to its children indicates that the children are and-nodes. The leaf nodes cannot

be reduced. Leaf nodes may be empty boxes. These denote empty goals (i.e.,

successes). All leaf nodes in the example are empty goals. In other cases, a non-

empty leaf indicates a failure. A logical inference is defined as the reduction of a goal

4 CHAPTER 1. INTRODUCTION

by a rule. In this example, substitutions that make the goal true are {X=a,Y=b}

and {X=b,Y=a}. The discerning reader will notice that the former substitution

can be obtained in two different ways (of proving the top level goal).

We call the tree syntactic because certain subtrees may be instantiated multiple

times during an actual execution. For example, if conjuncts are solved left to right,

multiple solutions to "p(X)" will lead to as many instantiations of the subtree rooted

at uq(Y)w.

Some of the leaf nodes in the and-or tree end in failure and others end in success.

The purpose of the backward-chaining inference procedure is to find either one or all

nodes associated with success in the and-or tree. Each node represents a solution.

Therefore, the computation is a search problem. In this thesis, we restrict our

attention to the case in which all solutions are desired.

The most widely used sequential interpretation is the one used by Prolog. The

search through the tree is a depth-first, left-to-right search. Search is suspended

for solutions to a subgoal when one solution is found. Search continues for the

next solution by chronological backtracking from the next conjunct. When the

first answer is obtained to the top level goal, it is announced. If more solutions are

demanded, the search continues. Parallel approaches to interpretation are discussed

in the next chapter. In particular, a parallel execution model called PMis described.

PM exploits more types of parallelism than other execution models that use data-

driven control and non-shared memory multiprocessor architectures.

The computation studied in this thesis is very similar to Prolog but not identical.

In particular, a couple of features that are part of Prolog are not allowed here. First,

Prolog programs can change the database of horn clauses. Side-effects of this type

are not allowed in this thesis. Second, Prolog programs allow "cuts"—a construct

used to prune part of the search space. "Cuts" are not allowed in this thesis. The

allocation strategy imposes additional restrictions on the computation as will be

seen later.

1.2. BACKWARD-CHAINING DEDUCTION

Top level goal r(X,Y)

Database C1 r(X,Y):-p(X),q(Y)1s(X,Y).

C2 r(X,Y):-f(X,Y),g(X),h(Y).

C3 P(a).
C4 P(b).
C5 q(Y):-m(X),n(X,Y).

C6 m(a).

C7 m(b).

C8 n(b,a).

C9 n(b,b).

C10 s(a,b).

C11 s(b,a).

C12 f(a,b).

C13 g(a).
C14 g(b).
C15 h(a).

C16 h(b).

C3
(m(X),n(X,Y))

12 L C13/^Q14 C1 S^^^C 16

Figure 1: A Syntactic And-Or Tree

6 CHAPTER 1. INTRODUCTION

1.3 Types of Parallelism

Several types of parallelism have been described in the literature. The list below

may not be exhaustive but covers the well-known types.

1. Or-parallelism: This is the solution of multiple or-nodes in parallel. There

is some disagreement in the literature about the exact meaning of this. The

most commonly used meaning [41], and the one used in this thesis, is that

the entire search trees rooted at the or-nodes can be searched in parallel. In

figure 1, the two sub-trees rooted at the two children or-nodes of the and-node

"r(X,Y)" can be searched in parallel using or-parallelism.

Conery [17,16] uses a slightly different meaning of or-parallelism. He defines

or-parallelism as the assignment of a process to each or-node. Presumably,

this meaning is neutral about the parallel search of the rest of the sub-trees

below the or-nodes.

2. And-parallelism: This is the parallel solution of sibling and-nodes. Note that

this does not mean that the and-nodes must be solved in isolation from each

other or that they must all be solved in parallel. In figure 1, the and-nodes
ap(X)" and "q(Y)" may be solved in parallel using and-parallelism.

3. Pipelining: This is the continuous streaming of complete solutions from one

and-node to another. This is useful when two and-nodes must be solved in

sequence. For example, pipelining allows the first solution of a source and-

node to be sent to a destination and-node and allows the parallel search for

(1) the first solution of the destination and-node and (2) the second solution

of the source and-node. In figure 1, it m*y be the case that the and-nodes

"m(X)" and "n(X,Y)" are solved in sequence. Using pipelining, solutions of

«m(X)" can be streamed continuously to "n(X,Y)'\ The search for consistent

solutions for "n(X,Y)" can begin as soon as a solution of "m(X)" is received.

4. Search-parallelism: This is the parallel reduction of an and-node to its children

or-nodes. The term "search" refers to the search for clauses whose heads unify

1.4. PARALLEL EXECUTION MODELS 7

with the and-node. The actual solution of the or-nodes in parallel is called or-

parallelism (as defined above). In figure 1, the literal "r(X,Y)w can be unified

with the heads of the two relevant rules in parallel.

5. Stream-parallelism: Conery [17] defines this as the "eager evaluation of struc-

tured data, which can be treated as a stream". Conery cites the example of

testing for membership in a list while the list is still being constructed. There

is no example of this in figure 1 and this type of parallelism is not considered

in this thesis. Examples of this can be found in the work of Shapiro [57]

among others.

6. Unification-parallelism: This is the parallelism associated with the unifica-

tion of two literals. It has been shown that this problem is inherently non-

parallelizable [20,74] (since it falls outside the problem class NC unless NC =

FP). In attempting to exploit unification-parallelism, the hope is that prac-

tical cases of unification-parallelism are more amenable to speedup. Again,

this type of parallelism is not considered in this thesis. Examples of this can

be found in the work of Citrin [13] and Robinson [53] among others.

1.4 Parallel Execution Models

A Parallel Execution Model for a sequential program and a multiprocessor contains

the specification of (1) methods to generate a set of parallel processes, (2) the state,

procedures, and inter-process communication for the set of processes, and (3) any

constraints placed on how the set of processes must be run on the processors in the

multiprocessor.

The Parallel Execution Model is correct iff it produces the same solutions as the

sequential program.

Same can mean the same set of solutions or the same ordered set of solutions.

In this thesis, we use the former meaning (i.e., the order in which the solutions are

produced is not considered significant).

8 CHAPTER 1. INTRODUCTION

For example, the set of parallel processes shown in figure 2 might be able to

perform the backward-chaining associated with the and-or tree shown in figure 1.

The arrows in the figure show communication of data or control. As the figure also

shows, the state, procedures, and messages associated with process "s(X,Y)", as

well as all other processes, must be specified. In our case, the parallel execution

model is said to be correct iff the set of solutions produced by it is equal to the set

of solutions produced by the Prolog interpreter as described in section 1.2.

A parallel execution model needs to exploit as much parallelism as possible while

not being too complicated or expensive (in time and space) to be practical. These

two requirements are clearly inconsistent, in general, and a reasonable tradeoff must

be made.

A dataflow representation of the computation is desirable for exploiting concur-

rency. There are at least two important reasons. First, a dataflow representation

of a computation makes all its parallelism explicit. Second, it has been argued

convincingly that reasoning about dataflow programs for purposes of proving cor-

rectness properties and allocation is easier than reasoning about other procedural

representations [5,11].

Although, a dataflow representation is desirable, it is not so at any cost. For

example, Fortran programs may be reformulated as dataflow programs but at the

cost of extensive copying of structures. The same argument holds for any other

procedural representation that allows modification of global state. Fortunately, for

logic programs, it has been shown that they can be represented easily as dataflow

programs (with indeterminate merge) if the types of parallelism to be exploited

are or-parallelism and pipelining only (see work by Ciepielewski and Haridi [12],

Lindstrom and Panangaden [41], and Singh and Genesereth [61]). Conery [15] has

shown how to exploit or-parallelism and a restricted form of and-parallelism, but

not pipelining. However, the control mechanism was not data-driven in nature, but

was a variant on the sequential backtracking mechanism of Prolog. PM, the parallel

execution model presented in this thesis, shows how to exploit all three types of par-

allelism, or-parallelism, pipelining, and the same restricted form of and-parallelism

1.4. PARALLEL EXECUTION MODELS

P(X)

m (X),n(X,Y) |

tt ^v

/ ? s(X,Y)

?
State?

Procedures?
Messages?

?

Figure 2: A Parallel Execution Model

10 CHAPTER 1. INTRODUCTION

described by Conery, while still using a data-driven solution. However, one more ex-

tension, local state, bad to be made to dataflow (other than indeterminate merge).

Local state makes the programs harder to reason about but the hope is that the

reasoning is still far easier than it is for arbitrary procedural representations with

global state (like Fortran). The resource allocation algorithms described in this

thesis illustrate this ease of reasoning to some extent.

On a different note, an important design consideration for the parallel execution

model came from the target multiprocessor class. As mentioned before, any single

processor may not have enough memory to store the entire program. Parallel exe-

cution models like the Variable Supply Model [61] that require a complete copy at

each processor are disallowed.

1.5 Target Multiprocessor Class

The target class of multiprocessors for this dissertation satisfies the following prop-

erties:

• There are an arbitrary, finite number of identical MIMD (multiple instruction

stream, multiple data stream) [22] processors. No assumption is made about

the speed of these processors.

• Each processor has a finite amount of local memory; there is no global (or

shared) memory. No assumption is made about the memory size except that

the entire database must fit in the collection of memories of the processors

in the system. The database is distributed over the processors. Parts of the

database may be replicated.

• Processors are connected with some interconnection topology. They can com-

municate only by sending messages to each other.

• Message delay is some function of the amount of data in the message and

the distance between source and destination. In general, if the source and

destination are not identical, there will be some non-zero delay.

1.5. TARGET MULTIPROCESSOR CLASS 11

• Each processor can perform backward-chaining deductions based on the subset

of the database that it contains.

An architecture that satisfies the multiprocessor scenario described above is

FAIM-1 [18,68].x Quoting from one of the papers, the FAIM-1 architecture is

claimed to be "consistent with high performance VLSI implementation and packag-

ing technology, and is easily extended to include arbitrary numbers of processors".

Another architecture that would fit the requirements is the Cosmic Cube [56].

Multiprocessors that do not fall in this class are the Encore Multimax [46] and

the Connection Machine [35]—the Multimax because it is a shared-memory machine

and the Connection Machine because it is a SIMD (single instruction stream, mul-

tiple data stream) machine. However, it may be possible to make shared-memory

multiprocessors like the Encore Multimax [46] behave like message-passing multi-

processors by making appropriate changes to the operating systems.

All the experiments described in this dissertation were done using a simulation

of the FAIM-1 multiprocessor. At the level of abstraction used in the simulation,

the multiprocessor is composed of a variable number of homogeneously replicated

processing elements connected together with a 3-axis variant of a twisted-torus. A

processing element is a processor with its own local memory. A 19 processor version

would have the topology shown in figure 3. The topology is called an E-3 surface

because there are 3 processing elements on each hexagonal edge. For the sake of

simplicity, wrap-around connections for just one axis are shown. In the complete

topology, two extra wires are connected to each processing element on the edge.

Each processor ends up having 6 connections to its neighbors and a completely

identical topological view of the rest of the processors. Quoting from the paper

by Stevens [68], "this folding scheme results in ... a provably minimal diameter

for hexagonal meshes." Another good feature of this topology is its scaleability.

The number of processing elements on a surface is given by 3E(E — 1) +1, where E

represents the E-size, or the number of processing elements on each edge. Therefore,

the numbers of processors on different sizes of surfaces can be 1,7,19,37,61 and so

1We are assuming, of course, that each processor will have the appropriate software to do
backward-chaining deductions.

12 CHAPTER 1. INTRODUCTION

Figure 3: E-3 Processing Surface for FAIM-1

on.
The FAIM-1 multiprocessor has not been built yet but some rough estimates

of its expected performance and configuration are given below. Each processor is

medium-grained, larger than a Connection Machine [35] processor but smaller than

a Symbolics 3600 workstation [44]. Each processor in the FAIM-1 multiprocessor

is expected to perform at 20 KLIPS (1 KLIPS = 1 thousand logical inferences per

second). Each processor will contain approximately 5 megabytes of memory dis-

tributed over several specialized memory types. Communication delay is expected

to be (2 + 2n + d) microseconds, where n is the number of packets in the message

and d is the distance in hops from the source of the message to its destination. The

packet size is 8 words and a word is 24 bits wide.

1.6 The Allocation Problem

We will assume for now that the computation is represented by a directed, acyclic

graph (or DAG). Semantically, the graph is a dataflow graph with two exceptions.

First, indeterminate merges are allowed. Second, the nodes may have associated

1.6. THE ALLOCATION PROBLEM 13

local state and may manipulate this local state. However, in keeping with dataflow

semantics, all computation is data-driven (i.e., triggered off at nodes by messages

received along the arcs). This type of graph will be called a dataflow* graph in this

thesis. The name indicates the similarity to dataflow and the "*" indicates that

it is slightly different from dataflow. It will be shown in chapter 2 that PM, the

parallel execution model, is based on dataflow* graphs.

The allocation problem can be defined precisely now. It is finding the many-to-

one mapping from the set of nodes in the dataflow* graph to the set of processors

that gives the minimum completion time.

Since the precedence constraints associated with the computation DAG can

be arbitrary (as can be seen later in chapter 2), this allocation problem is NP-

complete because a known NP-complete problem, namely Precedence Constrained

Scheduling [27], is a special case (in which communication delays are assumed to

be zero). It turns out that even more structured computations are NP-complete

[43]. In any case, the implication for this thesis is that finding the optimal solution

is impractical. Therefore, the allocation strategy suggested by this thesis is sub-

optimal. However, the allocation algorithms used are shown to be polynomial-time

in their worst case complexity. Yet, the allocations generated are found to exploit

much of the parallelism present in the logic programs.

In chapter 2, it will be seen that each node in the dataflow* graph is associated

with a certain subset of the database, where the set of subsets is mutually exclusive

and exhaustive. We will use the term partition for each of these subsets although

this use of the term is a bit non-standard. Instead of thinking of the allocation

in terms of mapping nodes of the dataflow* graph to processors, we can think of

it as mapping partitions of the database to processors. Some partitions may be

replicated for additional parallelism. Therefore, the mapping of database partitions

to processors will be many-to-many in general.

14 CHAPTER 1. INTRODUCTION

1.7 Allocation Strategy

The allocation strategy described in this thesis is a compih-time (or static) alloca-

tion strategy. In other words, the compiler makes the decisions involved in map-

ping tasks to processors. This strategy is in contrast to (1) run-time (or dynamic)

allocation, in which the run-time or operating system performs the allocation or re-

allocation, or (2) programmed (or user-defined) allocation, in which the user specifies

the allocation. Compile-time allocation is not expected to be the best solution for

all applications but it does compare favorably to the other two types in some ways.

The disadvantage of run-time allocation is that the overhead is paid at run-time

and it may be unacceptable. However, if the program behavior is highly dynamic

and is hard to predict at compile-time, this may be the best approach. The dis-

advantage of programmed allocation is that it places a big burden on the user and

the allocation probably has to be repeated for every new machine architecture. The

advantage, of course, is that the user may know much more about his program and

how to allocate it than an automatic allocator. Of course, features of all three types

of allocation may be combined. Given that so little is known about practical alloca-

tion strategies, and almost nothing about hybrid strategies, this thesis concentrates

on pure compile-time allocation. For logic programming, in particular, I do not

know about any work on compile-time allocation so far.

The (possibly) limited memory size of a processor affects the resource allocation

strategy also. Allocation strategies like the one described by Sarkar [55], which

depend on each processor being able to execute the entire program, are unacceptable

here.

The allocation strategy described in this thesis needs some restrictions that

PMdoes not require. First, the type of backward-chaining deduction is restricted.

In particular, no recursive clauses are allowed, unit clauses must be ground, and

certain probabilistic uniformity and independence assumptions must apply. Second,

a partitioning of the database is assumed to be given.

Figure 4 gives a high-level view of the allocator strategy. There are two main

1.7. ALLOCATION STRATEGY 15

modules. One module, called the allocator module, performs the search for a suit-

able allocation. Of course, since the search space is exponential, only a small part

of it can be explored. The other module, called the cost computation module, com-

putes the cost of a particular allocation being considered. Cost is a number that

captures the relative poorness of an allocation.

The cost function is formally denned and domain-independent (or application-

independent).2 All the domain-dependent information required is given in the input

Goal and Domain sizes and will be described in more detail in chapter 3. Also, the

cost function does not apply just to a specific multiprocessor. The multiprocessor

description is one of the inputs of the cost computation module. Again more detail

is given in chapter 3. The cost function has two other important attributes. First,

in an intuitive sense, the cost metric correlates well with intuitive notions of the

relative poorness of allocations. This intuition is justified by experimental results

obtained from an implementation of the allocator. Second, the algorithms to com-

pute this cost function have polynomial-time worst-case complexity in the size of the

computation. An exponential-time complexity would be considered unacceptable.

The allocator module consists of two phases: (1) a greedy allocation phase and

(2) a local minimization phase. Let us assume for now that each partition of the

database is allocated to a single processor. The greedy allocation phase allocates the

partitions of the database one at a time, allocating the latest partition to the least

cost processor without re-allocating previously allocated partitions. This phase has

polynomial-time worst case complexity. This is followed by the local-minimization

phase. In this phase, partitions of the database may be re-allocated to neighboring

processors if that reduces the cost. Let a round consist of a (possible) single re-

allocation of each part of the program. Each round has polynomial-time worst

case complexity. Obtaining a local minimum of the cost-function may take an

exponential number of rounds, however. Fortunately, it turns out that the greedy

-As used here, the term domain-independence means that the definition of the cost-function and
the algorithms to compute it are the same regardless of the domain. However, certain inputs to
the cost-function and the associated procedures may depend on the domain of interest. Smith [65]
prefers to call this semi-independence saving the use of independence for cases where absolutely no
domain dependent information is used.

16 CHAPTER 1. INTRODUCTION

A
L
L
O
C
A
T
O
R

Partitioned
Database

Greedy
Allocation

Allocation

I

Multiprocessor
Description

Goal
&

Domain sizes

Partial
Allocation

Local
Minimization

Cost
Computation

Allocation

I
Figure 4: Allocator Strategy

allocation phase alone, or greedy allocation combined with a limited number of

rounds of the local minimization phase, produces very reasonable allocations.

1.8 Organization of Document

Chapter 2 describes PM, the parallel execution model. Chapter 3 describes the

cost-function that is the basis of the allocator. The chapter includes descriptions of

algorithms to compute the cost-function and re-compute it for small changes in the

1.8. ORGANIZATION OF DOCUMENT 17

allocation. Chapter 4 describes the algorithms for allocation. The chapter includes

results obtained from implementations of PM and the allocator. Finally, chapter 5

presents a summary of the key ideas in this thesis and directions for future research.

18 CHAPTER 1. INTRODUCTION

Chapter 2

PM: A Parallel Execution Model

2.1 Introduction

The parallel execution model described in this chapter is called PM. It is designed

to exploit parallelism for backward-chaining deduction. In addition, PM is designed

for a class of multiprocessors that includes non-shared memory among other features

(see chapter 1 for more details). Side-effects to the database of facts and rules are

not allowed during the computation in PM.

A key feature of PM is that all control of execution is based on what we

call dataflow* graphs. These are dataflow graphs [70] augmented with two non-

dataflow features—indeterminate merge and local state. Dataflow* carries with it

the dataflow advantage of decentralized control. No synchronization is required

other than the flow of data.

Several important types of parallelism have been identified for backward-

chaining deductions [15,57]. The three that are exploited by PM are and-parallelism,

or-parallelism, and pipelining. Or-parallelism is the simultaneous exploration of

multiple paths to solving a single goal. And-parallelism is the simultaneous solution

of multiple parts of a conjunctive goal. Pipelining also applies to the solution of

constituent conjuncts in a conjunctive goal. It is the continuous streaming of solu-

tions between a pair (or more) of conjunct solvers in sequence. Just as in pipelined

19

20 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

computer architectures, pipelining can improve the throughput of processing.

Unrestricted and-parallelism is usually not exploited because of its wasteful,

combinatoric explosion. Various researchers have considered different methods of

restricting and-parallelism [57,15,19,61,41]. The and-parallelism exploited by PM

is of the type described by Conery [15], where conjunctive goals are not solved in

parallel if they share variables.

Conery's execution model exploited a combination of or-parallelism and and-

parallelism [15]. Lindstrom et al. [41] and I [61}*used a combination of or-parallelism

and pipelining. PM is unique in exploiting all three together for the class of archi-

tectures described above while still using data-driven control.

Resource allocation techniques are needed to determine (1) the distribution of

the database over the processors and (2) the processor to use in the case of replica-

tion of certain parts of the database. Clearly, this will strongly affect the efficiency

of backward-chaining deductions. Chapters 3 and 4 will describe a specific resource

allocation strategy for PM.

This chapter is organized as follows. First, the general approach towards ex-

ploiting parallelism is described in section 2.2. Next, PM, the parallel execution

model advocated by this chapter is described in section 2.3. This section begins

with an abstract description of PM, along with a proof of correctness, before plung-

ing into some algorithmic details. Section 2.4 presents some extensions to the basic

execution model. Finally, section 2.5 discusses some related work done by others.

2.2 The Approach

Section 1.2 described the standard sequential approach to backward-chaining de-

duction. This section describes how the sequential execution model may be changed

to exploit parallelism.
Many different parallel interpretations of the and-or tree are possible. One could,

of course, do everything in parallel. All or-nodes that are the children of an and-node

can be solved in parallel (or-parallelism) and all and-nodes that are the children of

an or-node can be solved in parallel (and-parallelism). For and-parallelism, this

2.2. THE APPROACH 21

would mean running a process for each of the conjuncts in parallel. This would

generate many solutions, most of which might fail if there were shared variables in

the conjunct that must be simultaneously satisfied. Therefore, in general, it is a

good idea to avoid this highly combinatoric explosion.

The solution adopted here is to exploit all the or-parallelism but to take a more

conservative position with respect to and-parallelism. Only those and-nodes that do

not share any common variables are solved in parallel. Assume for now (until section

2.4 on extensions to the basic execution model) that the solution of an and-node

binds all the variables in the associated literal to ground terms (i.e., terms with no

variables). Once and-nodes bind certain variables, then other and-nodes may stop

sharing unbound variables and those nodes can then be solved in parallel. One can

think of the and-nodes as being arranged in a directed, acyclic graph (DAG). Notice

that each application of a rule in the database produces one such DAG. There is

a one to one correspondence between the literals in the body of the rule and the

nodes in the DAG. Two examples that satisfy the constraint described above are

shown for the same conjunctive goal in figure 5.

Solutions from nodes flow to their downstream neighbors which can then be

solved in parallel. Solutions are sent in a continuous stream in contrast to the

backtracking control of sequential and most parallel execution models. This is the

essence of pipelining.

In general, some possible DAGs for a rule application will be solved more ef-

ficiently than others. In fact, this problem is analogous to ordering conjuncts for

efficient sequential interpretation [64]. This problem is important but is not the

subject of this thesis. In this thesis, a heuristic algorithm selects the DAG at run-

time. The algorithm is described in appendix A. The input to the algorithm is a

total order for a set of conjuncts—just as one would specify in Prolog, for example.

The partial order generated by the algorithm is a minimal subset of this total order

satisfying the constraint that conjuncts sharing unbound variables must be solved

sequentially. Note that the chosen D.-1.G is, in general, different when different sets

of variables get bound at rule application time. In addition, the specific DAG rep-

resentation of the partial order is minimal (in the number of edges used). The

22 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

Rule

Goal

h(X.YZU,V):-11 (X). t2(Y), t3(X,Y,Z). t4(Z.U), t5(Z,V)

t1(X). t2(Y), t3(X,Y,2), t4(Z,U). t5(Z,V)

DAG 1

DAG 2

Figure 5: Example DAGs

2.3. BASIC EXECUTION MODEL 23

complexity of the algorithm is 0(n3), where n is the number of and-nodes.

The database is distributed to the processors in the system according to three

constraints. First, the set of clauses must be partitioned into mutually exclusive and

exhaustive subsets such that each literal goal generated during backward-chaining

can be reduced by a single subset. A partition that satisfies this constraint is

simply a partition based on predicate symbols (of facts and consequents of rules). Of

course, other partitions may be possible as well. Second, each subset, in its entirety,

must be separately resident in the memory of one or more processors. Third, the

distribution of the database is done completely before any goal is presented to the

system. (There is no reason why run-time distribution of the database cannot be

done. It is just that it is not explored in this thesis.)

2.3 Basic Execution Model

The basic execution model deals with a simplified view of the multiprocessor envi-

ronment as well as of backward-chaining. The additional complexities are handled

in the extensions to the basic execution model.

The simplifications are as follows: (1) It is assumed that the set of clauses

pertinent to reducing any particular goal are in a single processor. For example,

if facts are partitioned on the basis of predicate symbols, all facts with a certain

predicate symbol are in a single processor. (2) It is assumed that once the database

is distributed over the multiple processors, there is no shortage of dynamic storage

at individual processors during the computation.1 (3) Finally, it is assumed that

all solutions to a goal bind all the variables in the goal to ground terms (i.e., terms

not containing any variables).

*It can be argued that this simplification violates the assumption of limited memory at each
processor. In general, it is impossible to guarantee, even for sequential computations, that the
amount of dynamic memory is sufficient for the given computation. In specific cases, for both
sequential and parallel computations, it may be possible to guarantee that the amount of memory
is sufficient.

24 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

2.3.1 Notation and Definitions

Let < Ei, E2, ••-■)En > denote a tuple of elements Ex, E2,..., En.

Let {Ei,E2, • • ■, En} denote a set of elements Ei, E2, • ■ •, En.

Bindings of variables are given as Variablel = terml. Unification of two literals

may result in a substitution given by a set of bindings. For example,

Substitution! = {V2 = term2, VZ = termZ}

The domain of a substitution is defined to be the set of variables whose bindings

are given in the substitution. For example, the domain of the substitution {V2 =

term2,VZ = termZ} is {^2,1^3}. Similarly, the range of a substitution is defined

to be the set of variables that appear in the bindings of the domain variables. For

example, the range of the substitution {V2 = VZ, V4 = V5} is {VZ, V5}.

Two substitutions may be composed to produce a single substitution. For any

two substitutions, 51 and 52, Compositional, S2) is defined only if the following

two conditions hold: (1) The intersection of the domains of 51 and 52 is the null

set and (2) The intersection of the range of 52 and the domain of 51 is the null

set. In particular, what is allowed is for the domain of 52 to contain some variables

belonging to the range of 51. For example, the two conditions are satisfied for the

following case:

51 = {X = Y,U = V}

52 = {Y = P,V = Q}

When the two conditions are satisfied, the Composition function is simply the union

function for sets. In the example, the composition would be {X = Y, U = V, Y =

p} y _ Q}. Also, two substitutions, 51 and 52 are equivalent if 52 can be obtained

from 51 by replacing the binding of a variable belonging to 51, Varl = terml,

by Varl = terml |WmKnff2, where binding2 belongs to 51 and |M„<«nfl2 indicates the

application of binding binding2. For example, {X = F, U = V, Y = P, V = Q} is

equivalent to {X = P,U = Q}.

2.3. BASIC EXECUTION MODEL 25

2.3.2 Behavioral Description

This section contains an abstract behavioral description of the basic execution

model. The next section contains a proof of correctness of this description. As

will be pointed out later in detail, extra structure will be added to this description

to make it more suitable for an implementation. It is in this spirit that we will treat

streams of messages as sets of messages (without an ordering) in this section and in

the next one.

The basic computation unit is a sequential process. Processes contain state and

they are connected together by communication channels (abbreviated channels).

Communication between processes takes place by sending a set of messages across

each channel. Channels are directed. All messages that are sent at one end of a

channel must arrive at the other end. Due to the correspondence between processes

and channels with nodes and arcs respectively in a directed graph, the pairs of

terms process/node and channel/arc will be used interchangeably in the rest of this

chapter.

Parallelism in the basic execution model is achieved by running different pro-

cesses in different physical processors. Of course, more than one process may be

mapped to the same processor due to resource constraints and communication re-

quirements. The details of setting up processes on different processors will be de-

scribed in the section on algorithmic details (section 2.3.4).

We use the phrase behavioral description to denote a set of functions that take

inputs and the current state as arguments and return outputs and a new state. A

set of functions is needed because different types of incoming channels need different

functions.

A very high level description is given now for the parallel computation, with more

details given in later paragraphs. There are three types of processes (represented

by boxes) and six types of channels (represented by directed arcs) as shown in

figure 6. All messages on all channels consist of a single substitution each. Each

Normal process is responsible for solving one literal for a set of substitutions Sa.

S\ is a function (to be described later) of the sets of substitutions that are received

along the Input channels of the Normal process. All solutions of the literal for

26 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

Input

Input Subtask

[Task

Normal
Process

^Subsolution

Output

Output

Head
Process

Solution

Tail
Process

Figure 6: Types of Processes and Channels

the Si substitutions are sent out on each of the Output channels of the Normal

process. These solutions are obtained by the reduction of goals, represented by the

application of substitutions in Si to the literal, by rules or facts. If a rule is used, a

DAG of conjunctive subgoals may be obtained of the type shown in figure 5, each

conjunct being represented by its own Normal process. The Head and Tail processes

shown in figure 6 are used just for the initiation of computation associated with the

DAG and the collection of solutions from the DAG. If a fact is used instead of a

rule, one can just think of the DAG as being empty and the Head and Tail processes

as being directly connected to each other.

Other than Input and Output channels, there are Task, Subtask, Solution and

Subsolution channels. A process can have at most one Task channel or Solution

channel. Also, each Subtask channel has a corresponding Subsolution channel. In

addition, no single process can have all types of channels. A Normal process, as

shown in figure 7, can have Input, Output, Subtask, and Subsolution channels only.

A Head process can have a single Task channel and some Output channels only

as shown in figure 8. A Tail process can have some Input channels and a single

Solution channel only as shown in figure 9. Each channel has a dual purpose when

viewed from the perspective of the two processes it connects. In particular, the dual

types have to be one of Input/Output, Task/Subtask, or Solution/Subsolution.

2.3. BASIC EXECUTION MODEL 27

Inputl

inputn

Output 1

Outputm
Subtaskl Subtaskp

Subsolutionl K Subsolutionp

Figure 7: A Normal Process

Task

Outputl

V
Head
Process

•
•
•

Outputm

Figure 6 : A Head Process

Solution

Inputl i i

•
•

Tail
Process

Inputn

Figure 9: A Tail Process

28 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

As mentioned before, the substitutions on the input channels to a normal process

represent goals that the process must solve. In particular, all input channels to a

normal process are functionally equivalent to just one hypothetical channel called

the virtual input channel. Each substitution in the virtual input channel, when

applied to the literal associated with a normal process, represents a goal that the

process must solve. The set of substitutions in the virtual input channel is obtained

by applying a function called CP to the sets of substitutions in the multiple input

channels. Informally, CP computes the cartesian product of the sets of substitutions

on the input channels and filters out inconsistent combinations of substitutions. The

need for this filtering can be seen in figure 10. The binding of variable "X" in a

substitution along the first input channel to process "d(X,Y,Z)" may be inconsistent

with the binding of "X" in a substitution along the second input channel. This

combination should be filtered out.

The formal definition of CP is given now enclosed by the labels Begin formal

definition of CP and End formal definition of CP. Readers satisfied with the

informal definition of CP given above may skip this detail safely.

Begin formal definition of CP

The formal definition of CP uses an auxiliary function Merge. The input

to Merge is n substitutions ISi,IS2,...,ISn. The output is a substitution or

a special element _L that is not a substitution. If there exists some variable V

such that its binding in 75,- (1 < i < n) is V = b{ and its binding in ISj

(1 < j < n) is V = bj and 6; ^ bh then Merge(ISuIS2,... ,ISn) =-L. Other-

wise, Merge(ISi,IS2,... ,ISn) = Union(ISi,IS2,...,ISn). Union is the normal

set union. The element J_ is used to indicate that inconsistent bindings of some

variable exist in the substitutions. This is used in the definition of CP to filter

out such combinations of substitutions. A couple of examples of Merge are given

below.

Merge({X = zl, Y = yl}, {X = xl,Z = zl}) = {X = xl, Y = yl, Z = zl}

Merge({X = xl, Y = yl}, {X = x2,Z = zl}) =_L

Note that all bindings are to ground terms as assumed earlier.

2.3. BASIC EXECUTION MODEL 29

Figure 10: Filtering Substitutions

The input to the function CP is n sets of substitutions ISSi,ISS2,...,ISSn.

The output is a set of substitutions.

CP{ISSuISS2,...,ISSn)

= {Merge(eue2,...,en) | e1c/551,e2e/552,... ,eneISSn} - {1}

"-" is used to denote set difference.

As a specific example,

CP({{X = xl, Y = 3/1}, {X = x2, y = y2}}, {{X = x2, Z = zl}, {X = x2, Z = z2}})

= {{X = x2,y = y2,Z = zl},{X = x2,y = y2,Z = z2}}

J5n<f formal definition of CP

We have seen that the set of substitutions in the virtual input channel is obtained

by applying the function CP to the sets of substitutions on the input channels. It

is in this sense that a single virtual input channel is equivalent to the multiple

input channels to a normal process. Therefore, without loss of generality, we can

complete the behavioral description of a normal process assuming just one input

channel—the virtual input channel.

Just as a normal process can have more than one input channel, it can have

more than one output channel. The messages on all output channels are identical.

Therefore, in addition to assuming just one input channel, we can assume just

one (virtual) output channel to complete the behavioral description without loss of

generality.

30 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

Normal

Process

Subtask
• • •

'Subsolution
• • •

Figure 11: Reduction of Goals

As mentioned before, each substitution in the virtual input channel applied to

the literal associated with a normal process is an input goal for the process to solve.

The solution to each goal is also represented as a set of substitutions. The set of

substitutions in the output channel is the union of the sets of solutions of the input

goals.

First, consider the case when the logic program contains only assertions to solve

a particular input goal for a normal process. In this case, the goal can be solved

immediately and sent out on the output channel of the process.

When the logic program also contains rules, additional computation needs to be

performed. All solutions found by using assertions are immediately sent on the out-

put channel as before. For each rule that can be used to reduce the goal, unification

is attempted between the goal and the head of the rule. If unification fails, nothing

further needs to be done for this goal/rule pair. If unification succeeds, the substi-

tution used for the unification is used to create a subgoal. The subgoal is simply the

substitution applied to the tail of the rule. A matching pair of subtask/subsolution

channels is created for the process as shown in figure 11. The input substitution

that created the goal is kept in the process as state to be used later. The subtask

channel carries just one element, an empty substitution, to start the solution of the

subgoal. The subsolution channel brings back a set of solutions to the subgoal.

2.3. BASIC EXECUTION MODEL 31

To make the solution of the subgoal possible, a two-terminal DAG of processes

is set up between the subtask and subsolution channels. The graph is called two-

terminal because it has two special nodes, an input node and an output node. The

input node contains arcs to all nodes without any other inputs and the output node

contains arcs from all nodes that do not have any other outputs. In our case, the

input and output nodes are the Head and Tail nodes respectively. The DAG between

the Head and Tail nodes is of the type shown in figure 5 for conjunctive goals. The

DAG corresponds to the conjunctive goal that is obtained by instantiating the tail

of the rule with the unification substitution. An example of such a two-terminal

DAG is shown in figure 12. Notice that variables U and V have been renamed

to U101 and V102. In fact, all variables in the rule must be "standardized apart"

before unification [48]. When the subgoal graph is set up, a piece of state, called the

Invocation-Substitution, needs to be stored in the Tail process. This is the subset

of the substitution (resulting from unifying the goal with the rule) that contains

bindings of variables in the goal (i.e., bindings of variables in the rule are ignored).

Figure 12 shows the Invocation-Substitution, shown as IS in the figure, that needs

to be stored for the example. Notice that this design decision leads to what might

be called distributed binding environments. An alternative might have been to copy

the complete environment and send it to the processes associated with the subgoal

graph. However, the problem with copying is that the environments might get very

large and the messages containing them may have excessive communication delays.

The top level goal to the system is also represented like any other subgoal in

the system (i.e., it is a two-terminal DAG of processes). For the top level goal, the

Invocation-Substitution is empty. A top level goal is shown in figure 13. "{{}}"

next to the task channel of the Head process indicates that the set contains just

one element, an empty substitution.

The purpose of the Head and Tail processes needs to be explained now. Both

are not associated with any literal.

The Head process merely serves as a router of data. When it receives an empty

substitution along its subtask channel, it sends copies of the same on all its output

channels.

32 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

Rule a(W,x1 ,Y,Z) :- b(W,Y),c(Y,U),d(Y,V),e(U>V,Z)

Goal a(w1 ,X,Y,Z)

Head

{W=w1}
a(W,X,Y,Z)

• • • c^
b(W,Y)

c(Y,U101)

d(Y,V102)

e(U101,V102,Z) Tail

IS={X=x1}

Figure 12: Example of Goal Reduction

Solutions 4

Figure 13: Top Level Goal

2.3. BASIC EXECUTION MODEL 33

As mentioned above, the Tail process stores an Invocation-Substitution in its

state. The Tail process receives substitutions along its input channels and it com-

putes the cartesian product of the associated sets of substitutions like any other

normal process. The rest of its behavior is different from a normal process. For

each substitution on its virtual input channel, it sends a substitution on its solu-

tion channel. The solution substitution is created by applying the Composition

function to the Invocation-Substitution and the input substitution. As an exam-

ple, consider figure 12 again. If the Tail process receives the input substitution

{Y=yl,U101=ul,V102=vl,Z=zl}, then the corresponding solution substitution is

{X=xl,Y=yl,U101=ul,V102=vl,Z=zl}.

A normal process may have several subsolution channels, one for each of the

subgoals created. The input substitution used to create the goal is kept as state

in the process. When the process starts receiving substitutions along its subsolu-

tion arcs, the following is done for each substitution: The Composition function is

applied to the associated input substitution and the subsolution substitution. The

resulting substitution is sent out on the virtual output channel. Subsolution sub-

stitutions are processed in this manner as they arrive. If the order of arrival cannot

be determined (when they arrive too close to resolve the difference in times), then

they are processed in an indeterminate order. It is in this sense that we can say that

the output channel of the process is created from the indeterminate merge of the

solutions of its subgoals. As an example, consider figure 12 again. If a subsolution

substitution for the given goal is {X=xl,Y=yl,U101=ul,V102=vl,Z=zl}, then the

corresponding output substitution is {W=wl, X=xl, Y=yl, U101=ul, V102=vl,

Z=zl}.2

The graph that is generated in the process of goal reductions starting from the

top-level goal is the dataflow* graph for the computation. Note that this graph is

not present before run-time. Also, there is no need to have an explicit representation

of this graph at run-time. However, algorithms, presented later in chapters 3 and 4,

2Clearly, the bindings for variables U101 and V102 are not necessary. If required, these could
have been pruned either by the Tail process or the Normal process. The current implementation
leaves these bindings in because they provide useful information during program development. A
production system should prune these bindings if its only goal is efficiency.

34 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

will be used to predict certain properties of these graphs for the purpose of resource

allocation.

2.3.3 Proof of Correctness

Theorem 1 For deductions with a finite and-or tree, the set of solutions produced

by PM is equal to the set of solutions produced by a Prolog interpreter.

Notice that the Prolog interpreter was defined in section 1.2. To prove the

theorem, we will prove two lemmas first. Before we get to the lemmas, a few

definitions need to be stated.

For a directed graph, a node Nl is defined to be a direct predecessor of node

N2 if and only if there is an edge from Nl to N2. Similarly, a node Nl is defined

to be an ancestor of N2 if and only if Nl is in the transitive closure of the direct

predecessor relation of N2. If a directed arc goes from node A to node B, A is called

the source node and B is called the destination node of the arc. Note that "node"

and "process" are used interchangeably.

Lemma 1 For each input channel to a process P, if the set of substitutions con-

tained in the channel is equal to the set of solutions to the conjunctive goal CGI,

where CGI is the set of the literal associated with the source process of the channel

and all literals associated with the ancestors of the source process, then the set of

substitutions in the virtual input channel of the process P is equal to the set of so-

lutions to the conjunctive goal CG2, where CG2 is the set of literals associated with

all the ancestors of the process P.

Proof: The statement "For each input channel to a process P, the set of substi-

tutions contained in the channel is equal to the set of solutions to the conjunctive

goal CGI, where CGI is the set of the literal associated with the source process

of the channel and all literals associated with the ancestors of the source process"

in the first part of the lemma will be referred to as the correctness condition of

the lemma. Assume for now that the process in question has two input channels.

The proof can be easily extended to an arbitrary number of channels by induction

2.3. BASIC EXECUTION MODEL 35

on the number of channels. Let the set of literals associated with the source pro-

cess of the first channel and all its ancestors be {Cl,C2,...,Ci,Ci+l,...,Cm} and the

corresponding set for the second channel be {Ci,Ci+l,.">Cm,Cm+l,...,Cn}. Call

these two sets A and B respectively. Notice that the two sets have an arbitrary

set of literals, {Ci,Ci+l,...,Cm}, in common. The set of ancestors of the process is

given by the union of A and B, {Cl,C2,...,Cn}. Call this set C. We know that the

solutions to C are exactly the same as the solutions of the bag, D, containing the

sum3 of A and B considered as bags. This is true because a conjunctive goal with

duplicate conjuncts is equivalent to a conjunctive goal with the duplicates removed.

Therefore, the lemma is reduced to the statement that applying CP to the sets

of solutions of A and B gives exactly the set of solutions to the conjunctive goal

composed of A and B. This simplified statement will be proved by showing a subset

relationship both ways.

First, let us prove that every solution of the conjunction of A and B is a member

of the result of CP. Let us pick an arbitrary solution Si. We know that any solution

of a set of conjuncts must be a solution of a subset also. (This follows easily from the

definition of the Prolog interpreter in section 1.2.) Therefore, Si must be a solution

of A and it must be a solution of B. Of course, Si may contain a superset of the

bindings required for A and B separately. In addition, the correctness condition of

the lemma tells us that this solution must be a member of both the input sets of

substitutions to the node. Actually, only the subset of Si relevant to A will be in

the first channel. The same applies for B. If this is the case, then the definition of

CP requires that the union of the two substitutions along the two channels (i.e.,

Si) be a member of the result of CP.

Now, let us show the reverse subset relationship to prove equality of the two sets.

We need to show that every member of the result of CP is a member of the solution

set of the conjunction of A and B. Recall from the definition of CP that each

member of the result of CP above will be the union of a substitution from the first

channel and a substitution from the second channel. In other words, each member

3Sum of bags is different from union of sets in the following way. The number of instances of a
member of the sum is equal to the sum of the number of instances of the member in the bags whose
sum is taken.

36 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

of the result of CP is a superset of a substitution on the first channel and also a

superset of a substitution on the second channel. Since the correctness condition of

the lemma states that each member of the first channel is a solution of A and each

member of the second channel is a solution of B, each member of the result of CP

is a solution to A as well as B. Therefore, it is a solution of the conjunction of A

and B. (This follows easily from the definition of the Prolog interpreter in section

1.2.)ü

Lemma 2 Consider a two-terminal DAG of processes in which the input node is a

Head process, the output node is a Tail process, and the DAG in between is composed

of normal processes. For this graph, sending the Head process an empty substitution

will produce, at the virtual input of the Tail process, the set of solutions to the con-

junctive goal composed of the literals associated with the normal processes provided

that each process individually solves the goals input to it correctly.

Proof: The statement "each process individually solves the goals input to it

correctly" in the last part of the lemma will be called the correctness condition of

this lemma.
We need to define the concept of distance of a process from the Head process.

Let distance of 1 denote that there is a direct edge from the Head process to the

process. A distance of n indicates that the maximum distance of a direct predecessor

of the process is n - 1. Let the distance of the Tail node also represent the length of

the graph. Notice that all such graphs have a finite length because they are DAGs.

Now, the lemma is trivially true for all such graphs in which the graph length is

2. In this case, there are a set of normal nodes in parallel after the Head node and

there are edges from all these nodes to the Tail node. In this case, lemma 1 applies

directly.
Now, the induction hypothesis is that the lemma is true for graphs of lengths

' up to n. The induction step requires that we prove that the lemma is also true for

graphs of length n + 1. For a graph of length n + 1, consider all nodes that are

direct predecessors of the Tail node. Replace one such node P by a new Tail node

and consider the graph between this new Tail node and the original Head node.

2.3. BASIC EXECUTION MODEL 37

The induction hypothesis can be applied to this graph because it has a length of

n or less only. Therefore, the set of substitutions in the virtual input channel of

the new Tail process is equal to the set of solutions of the associated conjunctive

goal. This has an implication for the original graph. The set of substitutions in the

virtual input channel of the node P (that is transformed to a Tail node) is equal

to the set of solutions to the conjunctive goal represented by the set of nodes that

are ancestors of the node P. Now, the virtual input channel of the node represents

goals for the node. The correctness condition of the lemma states that all such goals

are correctly solved. Therefore, the output channel of the node P (which is also an

input channel of the original Tail process) will contain the set of solutions to the

conjunctive goal of the literals represented by the node P and all its ancestors. The

same can be claimed for all input channels of the Tail node. Now, we can apply

lemma 1 to prove that the set of substitutions in the virtual input channel of the

Tail node is equal to the set of solutions of the conjunction of all ancestors of the

Tail node (i.e., all literals in the original graph).D

Proof of Theorem 1: The dataflow* graph contains some normal processes

whose solutions are produced by unification with facts directly and not by reduction

to a DAG of processes obtained by applying a rule. If there were no such normal

processes, the associated and-or tree would be infinite and the computation would

never end. Let us refer to these nodes as nodes of level 1. In general, a node is

defined to be of level n + 1 if and only if the maximum level of any node in any of

its subgoal graphs is n. The maximum node level in the dataflow* graph is called

the level of the graph.

The theorem will be proved by induction on the level of dataflow* graphs. The

theorem is trivially true for graphs of level 1 because lemma 2 applies directly. The

induction hypothesis is that it is true for graphs of level up to n. We need to show

that it is true for graphs of level n + 1. At the top level in this dataflow* graph is a

two-terminal graph with some nodes of level n +1. For each such node, its subgoals

contain nodes of level n or less. Therefore, each of its subgoals is correctly solved

according to the induction hypothesis. Since the solution of the node is obtained

simply by taking the indeterminate merge of the solutions of the subgoals, the node

38 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

itself is correctly solved. (Indeterminate merge produces the same solutions as the

ones produced by backtracking using the Prolog interpreter denned in section 1.2.)

Now, the application of lemma 2 proves that the top level DAG is also correctly

solved. □

2.3.4 Algorithmic Details

The description of the basic execution model that was presented in section 2.3.2 was

complete in its own right. However, modification of certain peripheral details makes

the implementation easier or more efficient. In addition, it is much too abstract for

a direct implementation. In this section, we describe the additional features that

are added to the abstract description and then describe specific choices made in

terms of state, messages, and procedures.

2.3.4.1 Additional features

There are three additional features. First, messages along channels are treated as

streams as opposed to sets. Second, messages contain more than just substitutions.

Third, each stream of messages is terminated by a special end-of-stream message.

Sets to Streams This is the most important additional feature. It is due to

this feature that PM gets its dataflow flavor. Every channel contains a stream of

messages. A stream is equivalent to an ordered set. In general, channels are not

required to preserve the ordering of messages from their inputs to their outputs.

Therefore, two messages that are sent in one order from the source process of a

channel may arrive in another order at the destination process of the channel.

Typically, messages do arrive in order. The advantage of not requiring in-order

delivery is that message protocols can generally be simpler and faster.

Computation at processes is triggered only by the arrival of messages and by

no other mechanism. In particular, complete streams need not arrive for processing

to begin. In this sense, a process behaves exactly like a node in a dataflow graph.

However, as noted before, processes contain state whereas dataflow nodes do not.

2.3. BASIC EXECUTION MODEL 39

In general, when an input message is processed, several output messages may

be generated as described in the abstract behavior. These output messages are sent

out on the appropriate output channels before the next input message is processed.

The only place in the description where the order of input messages needs to be

clarified is where the function CP is applied to the sets of substitutions on the input

channels to produce a set of substitutions on the virtual input set. In particular, a

new function CPnew needs to be defined that takes n input streams of substitutions

and returns one stream of substitutions to be considered the virtual input stream.

Streams are represented mathematically as tuples. CPnew is defined to be the

composition of three other functions.

CPnew = CPnewZ o CPnewl o CPnewl

CPnewl takes as input n streams of substitutions and returns one stream of

n-tuples (of substitutions). Let the input streams be:

< 5l,l, 5i,2, • • • »•?!,/, >

< 52,1 > $2,2, ■ • - ? Szj2 >

< Sn,l,Snt2, ..., Snjn >

The lengths of the streams are /1? Z2, • ■ •, ln as shown. The virtual input stream

is specified by the elements that it contains and a total order. The elements that it

contains are all /1 x l2 x ... x /n n-tuples of the form:

< '->l,t'i j '-'2,12) • • • 5 *^n,t„ >

where 1 < ij < lj. As can be seen from the prototypical tuple, its kth element

comes from the kth stream for all k such that 1 < k < n.

The order of the elements in the output stream is constrained only by a partial

order to be described shortly. Since a total order is required for a stream, any

particular total order that satisfies the partial order is acceptable. Two prototypical

40 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

elements PEl and PE2 are ordered if n - 1 of their constituent elements are the

same and the nth is different. For example,

PEl =< Shil,...,Sjtiil,...,Sn<in >

PE2 =< SUl,...,Sj,ij2,...,5n,;„ >

where the Sitj substitutions are as given above. In this c?ise, PEl will precede PE2

in the output stream if and only if ijx < ij2. Similarly, PE2 will precede PEl in

the output stream if and only if ij2 < iji.

As a specific example, consider the case when there are two input streams. Let

one input stream be represented by the tuple < 51,52 > and the other stream

by < 53,54 >. There would be four elements in the output stream: < 51,53 >,

< 52,53 >, < 51,54 >, and < 52,54 >. Let "^" indicate the ordering predicate.

The ordering constraint described above would force the following partial order:

< 51,53 >-« 52,53 >

< 51,53 >^< 51,54 >

< 52,53 >^< 52,54 >

< 51,54 >x< 52,54 >

Therefore, the output stream is one of either

« 51,53 >, < 52,53 >, < 51,54 >, < 52,54 »

or

« 51,53 >,< 51,54 >,< 52,53>,< 52,54 »

The motivation for this ordering constraint is that it is similar in spirit to the

first-in-first-out and incremental processing that is used for a straight dataflow

solution. This completes the definition of CPnewl.4

4Notice that, strictly speaking, one would have to remove any duplicates in the output of CPnewl
if one is to think of it as a set (or an ordered set). Typically, implementations of logic programming
languages do not prune out duplicates in the interest of efficiency. In the same spirit, the implemen-
tation of PM does not remove duplicates either. Therefore, if one is to be mathematically correct,
the collections of substitutions along streams should be called bags (or ordered bags).

2.3. BASIC EXECUTION MODEL 41

CPnew2 is applied to the output of CPnewl. CPnew2 takes one stream as

its input and returns one stream as its output. Each element in the input is an

n-tuple of substitutions. The output of CPnewl is a stream with exactly the same

number of elements as the input stream. The elements of the output stream are

obtained by applying the Merge function (used in the description of CP) to the

corresponding elements of the input stream (i.e., elements in the same positions).

Note that Merge takes n input substitutions and returns a substitution or a special

element _L. The n input substitutions in this case are the n constituent elements

of each element of the input stream to CPnewl. The Merge function is used, as

before, for the purpose of filtering out bad combinations of substitutions. As an

example, if the input to CPnewl were

« {X = xl,Y = yl},{X = x2,Z = zl} >,<{X = x2,Y = y2},{X = x2,Z = zl} >,

<{X = xl,Y = yl},{X = x3,Z = z2} >,<{X = x3,F = yl},{X = xZ,Z = z2} >>

then the output would be

<±,{X = x2,Y = y2,Z = zl}, J_,{X = xZ,Y = yl,Z = z2} >

The output of CPnew2 is the input to CPnewZ. CPnewZ takes one stream

as its input and returns one stream of substitutions as its output. The output of

CPnewZ is exactly the same as its input except that all the ± elements are filtered

out. All the non-_L elements in the input stream are retained in the output stream

with the same order. As an example, if the input to CPnewZ were

<±,{X = x2,y = y2,Z = zl},±,{X = xZ,Y = yl,Z = z2} >

then the output would be

<{X = x2,Y = y2, Z = zl}, {X = x3, Y = yl, Z = z2} >

The output of CPnewZ is the output of the top-level function CPnew. This

completes the definition of CPnew. The resulting stream obtained by an application

of CPnew to some stream arguments will be called the cartesian product of the

streams.

42 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

Message Content The message content is designed to not require any spe-

cial messages to create processes initially. There is enough information in the

messages that a process can be created when the first message for the process

arrives.5 To make this possible, each message contains more than just a substi-

tution. In fact, each message contains a task. A task includes a substitution as

well as a two-terminal DAG of literals representing a conjunctive goal. The two-

terminal DAG for a task along an input or output channel is the subgraph that

can be reached from the channel up to and including the first tail node. For ex-

ample, consider figure 12 again. Tasks along the channel from the Head node

to the "b(W,Y)" node would include the nodes labeled "b(W,Y)'\ "c(Y,U101)",

"d(Y,V102)", "e(U101,Vl02,Z)" and the Tail node. Similarly, tasks along the

channel from the node labeled "b(W,Y)" to the node labeled "c(Y,U101)" would

include the nodes labeled "c(Y,U101)", "e(U101,V102,Z)M and the Tail node. The

two-terminal DAG for tasks on task/subtask channels is the graph for the entire

conjunctive subgoal (including the Head and Tail nodes). The two-terminal DAG

for tasks on the solution/subsolution channels is empty.

End-of-Stream Message Another feature that is added in the detailed descrip-

tion is end-of-stream messages. These are special messages that are sent on streams

after the last regular message has been sent. The advantage of this feature is that

the top level process can tell when it has produced the last answer. This is the

only place in the description of PM that temporal ordering of messages on streams

is necessary. There are many ways of doing this with much less overhead than the

case in which all messages on a stream are required to be temporally ordered.6

The rest of this section contains detailed descriptions of all the state, messages,

and procedures required for the basic execution model.

5It may still be the case that additional messages to set up later processes concurrently with
processing of the earlier processes in the DAG may be more efficient.

6For example, the end-of-stream message may include the number of messages that have been
sent on the stream so far. The destination node must also keep a counter of messages received.
When an end-of-stream message is received, its processing is postponed till the right number of
regular messages is received first.

2.3. BASIC EXECUTION MODEL 43

2.3.4.2 State

Each processor, process and task has a system-wide unique name.7 In the rest of

this thesis, typical names for processors, processes, and tasks will be of the form Pj,

PSj, and Ti respectively.

Each processor maintains the following state information on the tasks and pro-

cesses for which it is responsible:

Work-Set: This is a set of tasks that the processor may work on.

Task: Each task is a 5-tuple of the form:

<Task-Name, Task-Description, Subtasks, Spawning-Process-Name, Parent-Task-

Name>

Task-Name is the system-wide unique name of the task. Task-Description is

the description of the task. This field contains the substitution that was described

earlier as the sole content of a message. This field will be described in more detail

below. The cartesian product of input streams of tasks produces a single virtual

input stream of tasks. The task description field of each task in the virtual input

stream gets its substitution exactly as described in the behavioral description. For

each task that is generated by the cartesian product function, the Spawning-Process-

Name field is set to the name of the process that applied the cartesian product. This

field is empty for any other tasks. Again, for every task in the virtual input stream,

multiple subgoals may be created by the application of rules that can reduce the

goal represented by the task. The reduced goals are represented as tasks and the

name of each such reduced task is a member of the Subtasks field of the parent task.

Similarly, child tasks (i.e., tasks that are produced by the goal reduction) have their

Parent-Task-Name field set to the name of the parent task. Variables in the rule

must be "standardized apart" before unification with the goal literal.

Task-Description: Each is a tuple of the form: <CG, BL>

CG (or Conjunct Graph) is a two-terminal DAG. BL is a substitution. The

nodes in the graph are processes (as specified below).

' All that is needed for this to work is that each processor have a unique name and each processor
have a processor-wide unique name generator. Unique system-wide names for processes and tasks
can now be generated by combining the system-wide unique processor name, where the process or
task is to be generated, with a processor-wide unique name.

44 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

Process: Each is a 10-tuple of the form:

<Process-Name, Literal, Processor-Name, Number-Inputs, Input-Queues, Outputs,

Spawned-Task-Names, Type, Child-Task-Name, Invocation-Substitution>

Process-Name is the system-wide unique name of the process. Literal is the

literal that the process is responsible for solving. Processor-Name is the name of

the processor where the process resides. Number-Inputs is the number of inputs

to the process. Input-Queues are the queues of messages waiting to be processed

at the inputs to the process. These queues contain additional state to (1) indicate

whether the end-of-stream message has been received and (2) give the status of the

cartesian product formation from the inputs (more later on this). Outputs are a

set of tuples specifying the inputs of other processes. Each tuple is of the form

<process-name, processor-name, input-number>. Spawned-Task-Names is a set of

task names. The names correspond to tasks that are created by cartesian product.

In case no cartesian product is necessary (when there is only one input), the unmod-

ified task names from the inputs are directly included in Spawned-Task-Names. The

Type of the process can be one of {Normal, Head, Tail}. The Invocation-Substitution

has been described before.

A complete process specification as given above is not necessary for each node

in the conjunct graph of a task specification. A partial specification as given below

is sufficient, "zzx" indicates an unspecified field.

<Process-Name, Literal, Processor-Name, Number-Inputs, xxx, Outputs, xxx, Type,

XXX, xxx>.

The unspecified fields are Input-Queues, Spawned-Task-Names, Child-Task-

Name and Invocation-Substitution from left to right.

Notice that the Processor-Name field is included. In particular, this means that

a process that creates a subgoal/subtask must bind all processes in the conjunct

graph of the subtask to specific processors. In case multiple choices exist (when

certain subsets of the database are replicated), resource allocation procedures must

be invoked to make the choice.

2.3. BASIC EXECUTION MODEL 45

2.3.4.3 Messages

Messages are 4-tuples of the form:

<Message-Type, Source-Processor-Name, Destination-Processor-Name, Arguments>

For now, only one message type is required. More types are required for the

extensions to the basic execution model. The type needed now is Input- Task. For

this, the Arguments field is a tuple of the form:

<Destination-Process-Name, Destination-Input-Number, Task-Name, Task-Description>

The fields have self-explanatory names. End-of-stream is indicated with "EOS"

as the substitution in the Task-Description.

2.3.4.4 Procedures

As mentioned before, the database of rules/assertions is distributed before any goal

is ever presented to the system. Also, all rules/assertions that can be used to

reduce any particular task are in a single processor. It turns out each processor in

the system need not have the complete partitioning information at run-time. Even

the partitioning information may be distributed. A processor needs to know only

the identity of processors that can be used to solve each literal in the tails of the

rules that it contains (i.e., each literal in the conjunctive subgoals that it generates

itself). The processor that is given the top level goal must know the identity of all

processors relevant to solving each literal in every goal that may be presented to

the system.

When a process on a processor creates a subtask, the Head and Tail processes

associated with the subtask are created at the same processor. The message con-

taining an empty substitution to the Head process can be replaced by a function

call. Similarly, the output messages from a Tail process on its solution stream

may be replaced by function calls since the destination of the messages is the same

processor. Therefore, messages are needed along input and output channels only.

Messages along other types of channels can be replaced by function calls.

46 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

As mentioned before, every task on an input/output channel contains the two-

terminal DAG that can be reached from the channel. Therefore, DAGs in tasks

input to a process must have their input node "stripped off" to obtain the DAGs

that must be output from the process. The cost of this procedure is simply the cost

of traversing the two-terminal subgraphs that can be reached from the outputs of

the process.

The cartesian product function was described earlier. One interesting feature of

this function is that it can be computed "incrementally". As messages arrive on the

input channels of a process, they are kept in a FIFO queue. Consider the situation

when there are some messages in the queues and a message arrives on one of the

channels. The virtual tasks that can be created out of the combination of this task

with the tasks waiting in other queues may be immediately computed. Of course,

the order of these newly generated virtual input tasks on the virtual input stream

must satisfy the order prescribed by the cartesian product function. Clearly, if the

cartesian product function is going to be computed incrementally, then some state

needs to be kept to indicate the extent to which the cartesian product has been

computed at any given time.

As mentioned before, the last message on each stream is a special end-of-stream

message. Special care must be taken to send these messages only when all other

messages have been sent on a stream. In particular, a normal process will send end-

of-stream messages on its output channels (one on each) when the conjunction of the

following three conditions is satisfied: (1) All input channels have received an end-

of-stream message. (2) All tasks on the virtual input stream have had their subtasks

created. (3) All subsolution channels have received an end-of-stream message. For a

Tail process, since there are no subsolution channels, condition (2) may be left out.

In addition, the end-of-stream message is not sent on any output channel (since the

Tail process does not have one) but it is sent on the solution channel. In the case of

Head processes, only one input message is received on the task channel. Therefore,

the end-of-stream need not be sent explicitly. For messages output from a Head

process, each channel carries two messages exactly—an input-task message and an

end-of-stream message.

2.3. BASIC EXECUTION MODEL 47

C1 r(X,Y):-p(X),q(Y),s(X>Y) P1

C2
C3

P(a)

P(b)

P2

C4 q(Y):-m(X),n(X,Y) P3

C5
C6

m(a)

m(b)

P4

C7
C8

n(b,a)

n(b,b)

P5

C9
C10

s(a,b)

s(b,a)

P6

Figure 14: An Example Database

2.3.5 A Complete Example

As mentioned before, a dataflow* graph is the graph of process nodes that is gener-

ated during the execution of PM. However, just as a syntactic and-or tree is easier to

view than a complete and-or tree, a syntactic version of the dataflow* graph is eas-

ier to comprehend. In the syntactic version, a process is connected (by subtask and

subsolution channels) to a single copy of the subgoal graph for each rule/assertion

that applies to the literal associated with the process.

Consider the example database shown in figure 14. The distribution of the

database is also indicated in the figure. In the example, the database is partitioned

on the basis of predicate symbols and each subset is resident on a single processor.

A graphical abbreviation is used to reduce the complexity of the dataflow* graph

of the example. This abbreviation is shown in figure 15.

The syntactic dataflow* graph associated with the database for the query r(X,Y)

is shown in figure 16. Solid boxes indicate processes. The literals inside the boxes

are the literals to be solved by the processes. The exceptions are the Head and Tail

process pairs which are shown as boxes with "H/T" inside. Dashed lines around sets

of boxes indicate that those processes reside in the same processor. The name of the

48 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

Task

Head

Process

I

Solutions
A

Tast (l tsc »lutions

• • •

H/T
-* 1

• • •

\ 1—n Ot \G of Normal
ocesses J

Figure 15: Graphical Abbreviation for Dataflow* Graphs

2.3. BASIC EXECUTION MODEL 49

processor is indicated as a name of the form Pi. Arcs that cross dashed lines indicate

streams of input-task messages. Task names (of the form Ti) are written next to the

arcs. "," indicates temporal sequencing. Arcs inside dashed lines indicate function

calls within the same processor to set up child tasks (downward arcs) and to send

solutions to parent tasks (upward arcs).

The top level task is Tl at processor Pi. It turns out that it has only one literal

"r(X,Y)" to solve. In general, there could be an arbitrary number.

Notice a couple of different dataflow* subgraphs for child tasks. The conjunctive

goal "p(X),q(Y),s(X,Y)" leads to the conjunct graph with "p(X)" and "q(Y)" solved

in parallel followed by "s(X,Y)'\ In the case of the conjunctive goal "m(X),n(X,Y)",

the two literals must be solved sequentially because they share the variable "X".

Finally, figure 17 shows some abbreviated task descriptions. To avoid cluttering

up the figure, task tuples have been abbreviated to the shortened tuples

< Task-Name,BL,Parent- Task-Name, CG>

where BL is the associated substitution and CG is the conjunct graph.

The sample task shown on top contains mnemonic field names to make it easier

to decode the fields in the examples. In addition, the process nodes in the CGs (or

Conjunct Graphs) are abbreviated to just the associated literals. The Invocation-

Substitution for Tail nodes is shown directly below the boxes representing them.

Tl is the task representing the top-level goal. T2 and T3 are two solutions

for the top-level task. T4 is the end-of-stream message for the solution stream

associated with Tl. In fact, the last task in each stream (except streams going to

Head processes) is a similar end-of-stream message.

A child task such as T33 gets a variable renamed X101 uniquely because variables

in rules are "standardized apart" before unification with goals.

Each process is responsible for solving the input node in the conjunct graph of

each task on its input streams. The outgoing tasks are, therefore, the incoming

tasks with the input node "peeled off". For example, look at task T47 and task

T49. In general, "peeling off" the input node of a task can create multiple tasks.

50 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

T1 I fT2.T3.T4
:---±J—---Pi

! T31 ,T32

|[T28.T29 T30^

H/T H/T

T33 T34.T.35.
T36 '

H/T

T47.T48

I
I ||T42,T43 T44l

T45.T46

H/T H/T

P4-

m(X)

T55 I
T49.T50.T51

T59.T60 • I T61

n(X,Y)
X

!

P5;
T52.J53.T54

T65.T66 ;

||T56J57 TSgjfc I : ||T627r63 T64^_

H/T| [wr] i :|H/T I Qj/T

Figure 16: Dataflow* Graph for Example

2.3. BASIC EXECUTION MODEL 51

< TN, BL, PTN, CG > Sample Task

< T1. 0. nil, Head r(X,Y) Tail

< T2, {X=a,X101=b,Y=b}, nil, nil >

< T3, {X=b,X101=b,Y=a}, nil, nil >

IS={}

< T4, EOS. nil, nil >

< T16, 0.

< T33, 0.

< T47, 0.

< T49, {X101=a},

< T50, {X101=b},

< T52, {X101=b,Y=a},

< T62, {Y=a},

nil,

T16 ,

nil,

nil,

nil,

nil,

is^IF
T50, nil >

q(Y) —' ► s(X,Y) — * Tail >
IS-0

Head — ► m(X101) —* n(X101.Y) —► Tail
IS={}

m(X101) —*n(X101,Y)

n(X101,Y)—►Tail >

IS={}

IS»{}

n(X101,Y) —► Tail
IS={}

Tail >

Figure 17: Some Abbreviated Task Descriptions

52 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

The Composition function is applied to pairs of (1) substitutions received by

a process on its input tasks with (2) substitutions received from the solution of

the child tasks. The composed substitutions are sent out with the outgoing tasks.

For example, observe how the result of Composition, from its application to the

substitution in input task T50 and the substitution in T62, is the substitution in

output task T52.

Cartesian product of multiple input streams at a process creates new tasks with

new names. T37, T38, T39, and T40 are skipped in the task numbering shown

in figure 16 because they are created internally in processor P6 from the cartesian

product of T18, T19 and T21, T22.

2.3.6 Remarks on Efficiency

This section contains comments on some efficiency issues related to the basic exe-

cution model.

Distributed Environments: As described earlier, substitutions of tasks on vir-

tual input streams are retained in a process when subgoals are set up. This is

the distributed environment approach. An alternative would be to send complete

copies of environments to child tasks. This could be accomplished by replacing

the substitution field, as it stands currently, by a stack of substitutions. However,

the disadvantage with the "copying" approach is that communication costs will be

higher and perhaps unacceptable. The disadvantage of distributed environments is

that subsolutions must be returned to the process generating subtasks so that the

Composition function may be applied to the input substitutions paired with the

subsolution substitutions.

Number of Tasks Generated: In the example shown in section 2.3.5, 66 tasks were

generated. If a sequential Prolog interpreter were used with the same database, the

number of logical inferences8 used would have been 15. One might ask if the 66/15

ratio of the number of tasks to the number of sequential logical inferences reflects

on the inefficiency of the model. As it turns out, the 66/15 ratio is completely
8A logical inference is denned to be a successful reduction of a literal goal by either one assertion

or one rule.

2.3. BASIC EXECUTION MODEL 53

misleading. The number of tasks generated in a dataflow* graph is not a good

indicator of the cost of the model as will be shown below.

Several simple optimizations can be used to do away with a large number of

tasks entirely and many other tasks involve trivial amounts of computation. In

particular, end-of-stream tasks need not be sent separately. Each end-of-stream

task can be piggybacked on the last regular task sent on the stream in question.

Another optimization is to replace tasks on the solution channels of Tail processes

with function calls. Since each such function call involves very little work (i.e.,

Composition of two substitutions or checking whether an end-of-stream task should

be sent on the output streams of the normal process), we will ignore these in the cost

calculation. Also, the Head nodes merely serve as routers of data. Therefore, tasks

on the task channels of Head nodes will be ignored as well in the cost calculation.

Also, tasks on the input channels to Tail processes lead only to cartesian product

but not to any logical inferences. We will ignore these tasks as well. The cost

of cartesian product, in general, will be considered separately later in this section.

After having removed all tasks from the example that are to be ignored as described

above, we notice that only 10 tasks remain for which logical inferences may need to

be performed. These tasks are T5, T14, T16, T18, T19, T21, T22, T47, T49, and
T50.

However, to make a comparison of cost between PM and sequential Prolog,

even this number of tasks remaining can be misleading. One should really consider

the number of logical inferences that are associated with the remaining tasks. On

doing the arithmetic, we find that, in this particular case, the number of logical

inferences in the example is also 10. Notice that this is less than the number of

logical inferences (15) in the sequential Prolog case.

The number of logical inferences in dataflow* graphs is highly dependent on

the partial order that is chosen for conjunctive goals. By choosing a bad partial

order, it is possible to have a higher number of logical inferences in dataflow*

graphs compared to sequential Prolog. It also turns out that if no and-parallelism is

exploited, and the only parallelism exploited is or-parallelism and pipelining, then

the number of logical inferences is identical for both PM and sequential Prolog.

54 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

Also, as shown in the example, if the partial orders are chosen carefully, then the

number of logical inferences can be reduced.

In addition to reducing the number of tasks, one can also reduce the number of

processes. In particular, since Head processes are used as data routers only, they

do not have to be created explicitly. Also, both Head and Tail processes, created

when an assertion is used to reduce a literal goal, may be removed because there is

an empty DAG between them.

Cost of Decomposition: Partial orders need to be generated for conjunctive goals.

As mentioned before, these partial orders are of the same type used by Conery's

execution model [15]. Therefore, his algorithm for partial orders can be used directly

here. Also, appendix A describes another algorithm that is used in PM along with

the associated cost.

Trade-off between Space and Time: Non-shared memory architectures (like dataflow

architectures [70] and distributed systems [38]) have the property that extra space

may be consumed in the attempt to reduce time of execution. This can happen if,

for example, two parallel operations, 02 and 03, have a dataflow dependency on

the result of an operation, 01. If memory is not shared and all three operations are

on different processors, then copies of the result of 01 must be sent to the proces-

sors associated with 02 and 03. In a shared memory architecture, the processors

associated with 02 and 03 could simply read a single copy of the result 01 from

shared memory. The target architecture of PMdoes not have shared memory either

and, therefore, shares this property.

Cost of Cartesian Product of Streams: As was pointed out before, cartesian

product of streams requires extra memory compared to the sequential Prolog exe-

cution. In particular, taking the cartesian product of streams requires space equal

to the sum of the lengths of the individual streams. In addition, the number of

elements in the cartesian product may be equal to the product of the lengths of

the streams in the worst case. Notice that the worst case is reached only when no

composite binding leads to any inconsistent bindings.

In addition, the processing cost associated with the cartesian product function is

of the order of the product of the lengths of the streams. The situation is alleviated

2.4. EXTENSIONS TO BASIC MODEL 55

somewhat by the fact that the constants involved in the processing cost are fairly

low. In particular, the most costly processing operation is checking to see whether

a composite substitution has consistent bindings. Even more importantly, however,

one can save on more costly logical inferences by using PM as illustrated in the

example.

In conclusion, there is a cost to taking the cartesian product of streams and this

could be substantial in the worst case. However, the additional parallelism gained

may outweigh the cost. The total number of logical inferences may be reduced as

well and this may make PM an attractive option for sequential processors in some

cases. The example given earlier in section 2.3.5 illustrates the effect of reduction

in the number of logical inferences compared to the sequential Prolog execution.

Resource Allocation: As mentioned before, the design of parallel execution mod-

els is just one of many difficult problems that must be solved to make multiprocess-

ing a success. Resource allocation is one such problem. Notice, however, that this

is not a problem restricted to this particular parallel execution model.

2.4 Extensions to Basic Model

Three extensions to the basic execution model are described in this section. The

first two deal with handling storage constraints due to large databases and long

streams. The third extension deals with non-ground bindings of variables.

2.4.1 Handling Storage Constraints

2.4.1.1 Large Databases

As mentioned before, the basic execution model deals with the case where all clauses

that can be used to reduce any particular atomic proposition goal reside in a single

processor. One can achieve this if, for example, one partitions the database on the

basis of the predicate symbol of the head of the clause. Each partition is mapped

onto a single processor.

56 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

Of course, it is possible that a particular partition may not fit in a single proces-

sor due to memory constraints. In addition, one may want to spread a partition over

many processors to exploit the parallelism in a single backward-chaining step. The

goal proposition may be unified in parallel with the heads of the relevant clauses

and subtasks may be created in parallel.

The solution is to maintain a single processor as being responsible for each

partition (as before). However, instead of the clauses in a partition physically

residing in the responsible processor, the clauses are distributed over a certain

neighborhood of the processor. One could, for example, distribute the partition

over all processors within some number of message hops away from the responsible

processor.

Two extra message types are required now to make the subtask creation and

solution collection possible. The message types are Do-Task and Done-Task.

The Arguments field of the Do-Task message type is of the form:

< Task-Name, Task-Description, Source-Process-Name>

Task-Name is the name of the task that needs to be worked on. Task-Description

is its description. Source-Process-Name is the identity of the process that is sending

the message.

The Arguments field of the Done-Task message type is of the form:

<Task-Name, Child-Task-Name, Destination-Process-Name, Solution>

Task-Name is the name of the task that was originally received from the process

with name Destination-Process-Name. Child-Task-Name is the name of the child-

task of Task-Name that was created and Solution is the substitution that is being

reported as an answer to Child-Task-Name. Again, end-of-stream may be indicated

by an "EOS" in the Solution field.

The messages are used in the following way. Processes still reside at the processor

responsible for the relevant partition. The relevant partition is the one that is

relevant to solving the atomic proposition associated with the process. When a

process receives an input-task message, it finds the incremental cartesian product

as before. The new tasks are, however, not solved locally. They are sent to the

neighborhood associated with the relevant partition around the processor using

2.4. EXTENSIONS TO BASIC MODEL 57

Do-Task messages (i.e., each processor in the neighborhood receives a copy of the

Do-Task message). These processors in the neighborhood create subtasks just as

the single responsible processor would in the basic execution model. The difference is

that solutions must be communicated back to the responsible processor using Done-

Task messages. End-of-stream is indicated as before with the Solution argument set

to "EOS". The difference here is that each processor in the neighborhood, including

those that cannot create any solutions or subtasks, must report to the responsible

processor when all subtasks have been generated using the Done-Task message.

This is done by setting the Child-Task-Name argument of the message to nil and

the Solution argument to "EOS". In the basic execution model, since all clauses

that could be used to create a subtask were in a single responsible processor, the

responsible processor knew locally when all possible subtasks had been created. The

new mechanism is necessary to replace knowledge that no longer resides locally.9

In addition, one needs to maintain a flag at the parent-task to indicate whether

all possible subtasks have been found. This flag is false when a task is first created

using cartesian product at a process. After a Do-Task message is sent out to the

appropriate neighborhood and after the responsible processor has received an indi-

cation from each processor that all subtasks have been generated, then the flag can

be set to true.

Note that it is not necessary that the partition be distributed over some neigh-

borhood of a certain processor. The distribution may be over an arbitrary set of

processors. This extra flexibility may be useful for some task allocation strategies.

2.4.1.2 Long Streams

Processes may have multiple input streams whose cartesian product has to be com-

puted. To create this cartesian product, essentially the process has to store complete

streams until the entire cartesian product has been obtained. Since it may be hard

to accurately predict the lengths of these streams ahead of time, it is possible that

9A more efficient solution to propagating Do-Task and Done-Task messages to/from the neigh-
borhood is possible but the idea here is merely to show that a satisfactory solution to the problem
exists.

58 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

Rule

Goal

h(X,Y,Z,U,V):-11 (X), t2(Y). t3(X,Y,Z), t4(Z,U). t5(Z,V)

t1(X), t2(Y), t3(X.Y,Z), t4(Z.U). t5(Z,V)

* tKX)

/

HeadC

t2(Y)

Original Dataflow* Graph

Additional Dataflow* Graph

Figure 18: Handling Long Streams

the processor responsible for the process may not have the requisite storage.

The solution is to sequentialize the dataflow* graph upstream from the process

up to the Head process. As much sequentialization is done as is necessary to remove

the memory problem. In the worst case, the sequentialization may lead to a linear

sequence of processes requiring absolutely no cartesian products of streams. Of

course, this means that no and-parallelism is exploited. Or-parallelism and pipelin-

ing will continue to be exploited as before. Figure 18 shows an example of this

process. In the example, the node corresponding to t3(X,Y,Z) is the one that gets

into a memory constraint situation.

Notice that the new dataflow* graph must exist independently along with the

old dataflow* graph. This is necessary because tasks/solutions may still be in

2.4. EXTENSIONS TO BASIC MODEL 59

the pipeline in the original dataflow* graph when the new graph is introduced.

Therefore, more than one Tail process may exist for a certain task. When solutions

flow out of the Tail processes, an indeterminate merge of these streams must happen.

Also, an EOS is sent from the collection of Tail processes only when they have all
produced an EOS.

2.4.2 Handling Non-Ground Bindings

If a process produces non-ground bindings for the atomic proposition associated

with it, then some downstream processes that work in parallel may not be able to

do so any more. Processes should execute in parallel only if the bindings they are

expected to produce are not for any common variables. A non-ground binding from

a preceding process may remove this necessary condition.

The solution is more or less complementary to the solution for the long stream

problem. The dataflow* graph downstream from the process in question is sequen-

tialized as much as necessary in order to avoid the problem. Figure 19 shows an

example of this process. In the example, the node t3(X,Y,Z) is expected to produce

a ground binding for the variable Z but does not. Similar to the long stream case,

the multiple dataflow* graphs coexist independently. Multiple Tau processes are'
handled as before.

2.4.3 Handling Multiple Copies

As of now, only one copy is allowed for each partition of the database. If there are

goals generated in parallel that use the same partition, this restriction may lead to

a bottleneck. A way out of this problem is to allow multiple copies of partitions.

The solution is to decouple the functions of a normal process into two process types:

CP and normal-new. The function of the CP process type is to compute cartesian

products only. The normal-new process type does the rest of the computation that

a normal process type did. Figure 20 shows graphically the interaction between

the different process types. As indicated in the figure, two new message types are

60 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

Rule

Goal

h(X,Y,Z,U,V) :-11 (X), t2(Y), t3(X,Y.Z), t4(Z,U), t5(Z,V)

t1(X),t2(Y),t3(X,Y,Z)>t4(Z,U),t5(Z,V)

Original Dataflow* Graph

Head

j#|tKX) k

n t2(Y) r
t3(X,Y,Z) t4(Z,U) t5(Z,V)

Additional Dataflow* Graph

Tai

Figure 19: Handling Non-Ground Bindings

2.4. EXTENSIONS TO BASIC MODEL 61

Cluster of Copies

• ' Distribute-Task

N

N

Collect-Task
i

#* ►«
Input-Task CP Input-Task CP NorT

/
i

N N .-

Figure 20: Handling Multiple Copies

required. These are: Distribute-Task and Collect-Task. The Distribute-Task

message type is used to distribute computation to multiple copies of the partition

and the Collect-Task message type is used to collect solutions from the multiple

copies of the partition.

The Arguments field of the Distribute-Task message type is of the form:

<Destination-Process-Name, Task-Name, Task-Description>

The Arguments field of the Collect-Task message type is of the form:

<Destination-Process-Name, Spawned-Task-Name, Solution>

Solution is the substitution that is being reported as a solution to the task whose

name is Spawned-Task-Name. As before, end-of-stream is indicated by an "EOS"

in the Solution field.

Just as in the case of handling large databases, the multiple copies may be

distributed to some neighborhood of a central processor or they may be in some

arbitrary set of processors.

62 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

2.5 Discussion

It was mentioned earlier that side-effects are not allowed in PM. This is not strictly

true because benign side-effects that do not affect the result of a computation but

only affect the efficiency can be allowed. A side-effect of this type is caching of

results. In general, the lack of general side-effects is not as severe a problem as

it might seem. Many search procedures [48] do not need any side-effects. Specific

applications that do not need side-effects include diagnosis [28] and test-generation

[59]—both for digital hardware.

Also, it was mentioned that PM is designed only for non-shared memory ar-

chitectures. However, it is not hard to modify PM to work on shared memory

architectures as well. Going the reverse route (i.e., taking a shared memory al-

gorithm and making it work on a non-shared memory architecture), is typically

harder.

The rest of this section compares PM to related parallel execution models. The

related work that is discussed in this section is work by Conery [15], Singh and

Genesereth [61], Lindstrom and Panangaden [41], Ciepielewski and Haridi [12], Bic

[8], Clark and Gregory [14], Shapiro [57], Borgwardt [9], and Furukawa [25].

The research presented in this chapter builds on two important ideas. One is the

exploitation of and-parallelism as described by Conery in his dissertation [15]. The

other is the exploitation of or-parallelism and pipelining as described by Ciepielewski

and Haridi [12], Lindstrom and Panangaden [41], and Singh and Genesereth [61].

The connections of PM with these two sets of ideas are described below.

Conery's execution model exploited a restricted sort of and-parallelism. This

restriction is exactly the one used in PM. A significant difference is that the back-

tracking control of Conery is completely abandoned. Instead, PM uses a dataflow

solution (with the exceptions described before). One consequence is that com-

munication is reduced because all communication associated with backtracking is

absent. A second consequence is that control is more decentralized. In general,

Conery's and-processes correspond to the Head/Tail process pairs used in PM and

Conery's or-processes correspond to the normal processes in PM. PM does not have

2.5. DISCUSSION 63

the Head/Tail process pairs coordinate the activities of the normal processes (in

between) as Conery's model had the and-processes do for the children or-processes.

A third consequence is that parallelism due to pipelining comes for free in PM.

Conery's execution model, on the other hand, sends one solution at a time along

"dataflow" arcs. Further solutions are sent on the prodding of another level of

control analogous to backtracking in sequential Prolog.

Haridi and Ciepielewski [12], Lindstrom and Panangaden [41], and Singh and

Genesereth [61] showed how or-parallelism and pipelining could be exploited to-

gether. In these pieces of research, conjunctive goals were solved from left to right

in sequence. PM exploits and-parallelism also by using the idea of streaming for

pipelining but allows the total order of conjuncts to be changed to a partial order.

Or-parallelism is exploited as before. However, the cost of exploiting the additional

parallelism is that a dataflow solution (modulo indeterminate merge) has a non-

dataflow feature, cartesian product of streams, added to it. Although cartesian

product does require state to be maintained, the good news is that it is only local

state. No global state is maintained.

Bic [8] describes another data-driven parallel execution model. However, this

model only handles a restricted form of Horn clauses. Specifically, predicates must

be binary, functions must be immediately evaluable during execution, and no struc-

tured terms are allowed.

Other parallel execution models have made use of programmer-supplied annota-

tions to control the parallelism. Examples include Clark and Gregory's PARLOG

[14], Shapiro's Concurrent Prolog [57], and Borgwardt's execution model [9]. PM

differs from these execution models in that it does not use any annotations. An-

other difference is that none of these three execution models exploits pipelining as

exploited by PM. Moreover, Borgwardt's execution model is restricted to shared-

memory architectures. However, these execution models have been characterized by

the exploitation of another form of parallelism—stream parallelism. As defined by

Conery [15], this type of parallelism involves the pipelining of structured data. For

example, if two functions are to be applied, in sequence, to a list of data elements,

the first function may be applied to the elements of the list one by one and these

64 CHAPTER 2. PM: A PARALLEL EXECUTION MODEL

partial results may be sent to the second function as they are generated. The second

function may be applied to the result elements as they are generated by the first

function. Typically, this form of parallelism is not important for knowledge-based

applications. For example, the diagnosis [28] and test-generation [59] applications

mentioned before do not contain any exploitable parallelism of this type.

Matsumoto et al., in their backup parallelism mou.l [25], view each node of

the and-or tree as a process. Each and (or) process activates descendant or (and)

processes. A descendant process starts searching for another solution right after

it sends a solution to the parent process. If an additional solution is found and

it is not needed by the parent, the descendant process suspends. If the process is

reactivated by the parent process in the future, it immediately returns a previously

found solution or continues trying to find a solution. Therefore, one level of or-

parallelism is maintained throughout the tree of processes. PM does not restrict

the level of or-parallelism.

After the work on PM was originally published [63,62], Li [40] came up with

essentially the same idea independently for her doctoral dissertation. She calls her

parallel execution model the Sync Model.

The list of parallel execution models compared to PM in this section is by no

means exhaustive. An attempt was made, however, to cover all major categories

that are relevant.

2.6 Conclusions

This chapter has described PM, a parallel execution model for backward-chaining

deductions. The most important contribution of this chapter is that PM can si-

multaneously exploit or-parallelism, and-parallelism, and pipelining. This is more

parallelism than is exploited by other execution models using dataflow principles,

multiprocessors with no shared memory, and distributed databases. The extra

parallelism can be an important advantage in a situation where large numbers of

processors are available. Using dataflow principles means that synchronization over-

head is minimized and the inherent parallelism can be fully exploited.

Chapter 3

Cost Function

Optimal task allocation, even for relatively simple problems, is NP-complete [43].

The approach taken in this thesis is to define a cost function that quantifies in-

tuitive notions of undesirable allocations and yet allows for efficient computation

and recomputation. This chapter describes the cost function formally and presents

algorithms for its computation and recomputation. The next chapter describes

the allocation algorithms that use this cost function and results obtained from an

implementation of the allocator.

This chapter is organized as follows. Section 3.1 gives a formal definition of

the cost function. The next two sections describe algorithms to compute this cost

function.

3.1 Definition of Cost Function

3.1.1 Preliminary Definitions

The logic program is described as a 3-tuple < F,R,G >, where F is the set of facts

(i.e., Horn clauses with exactly one positive literal and no negative literals), R is

the set of rules (i.e., Horn clauses with exactly one positive literal and one or more

negative literals), and G is the set of goals (i.e., conjunctions of positive literals).

65

66 CHAPTER 3. COST FUNCTION

Both facts and goals at compile-time may contain unknown constants. Unknown

constants exist at compile-time only and represent constants at run-time. They are

called unknown because their exact values at run-time are not known at compile-

time. Since facts/goals with unknown constants may represent one of potentially

many actual facts/goals with constants, facts/goals with unknown constants may

be called fact patterns or goal patterns. For example, a fact pattern p(uc), where uc

is an unknown constant, may represent either of facts p(cl) or p(c2), where cl and

c2 are actual constants.

Fact and goal patterns may be specified with an associated number. The number

represents the expected number of instances of those fact and goal patterns at

run-time. An instance of a fact/goal pattern is a fact/goal with specific values

substituted for all unknown constants in the fact/goal pattern.

L |s, where L is a literal and S is a substitution, denotes the literal obtained by

applying the substitution S to the literal L.

A cluster of processors is defined to be a set of processors that includes a central

processor for the cluster and all processors within some specified distance away from

the central processor. The size of the cluster can vary depending on the maximum

distance allowed from the central processor and processors on the periphery of the

cluster. Given the FAIM-1 topology as described in 1, these cluster sizes can be

ZE(E — 1) -(-1 for positive integer E. The maximum number of processors in a cluster

is restricted to be less than or equal to the maximum number of processors in the

multiprocessor.

3.1.2 Assumptions

The algorithms to compute the cost function depend on the assumptions listed

below:

1. Unknown constants must represent atomic constants at run-time. They may

not represent compound terms.

3.2. DEFINITION OF COST FUNCTION 67

This assumption is chosen so that it will be possible to estimate the amount

of data (in bytes, say) that will be used to represent these constants at run-

time. If they represent arbitrary structures or functionals, then it may not be

possible to estimate the amount of data without additional information from

the user.

One way to satisfy this assumption is to not allow any structures or function-

als at all. However, one does not have to be this strict because all that is

required is that unknown constants not be bound to structures or functionals.

Chapter 4 (on Allocation Algorithms) contains an example that has to do

with reasoning about a digital hardware device. In that example, functionals

are present, yet unknown constants are always bound to atomic constants.

2. There are no recursive clauses in F U R.

With arbitrary recursive clauses, it is not possible to estimate the amount

of communication or computation because the problem is equivalent to the

halting problem. (It will be seen in section 3.1.3 that estimating the amount

of communication and computation is necessary to compute the cost func-

tion.) However, in certain recursive cases, it may be possible to estimate the

amount of communication and computation automatically. For example, if

the length of a list argument gets reduced by one for every recursive call, then

the recursion depth can be estimated to be the length of the list and it should

be possible to estimate communication and computation. In addition, there

may be other cases where some pragmas (or hints) from the user may allow

a program to complete the rest of the analysis. For example, in a quick sort

program, the length of the list gets reduced to half for every recursive call.

Therefore, the recursion depth is log2n, where n is the length of the list.

3. Each fact in F is ground (i.e., no variables are allowed in any fact). Rules may

contain variables, however.

Again, this assumption is designed so that proper estimates may be made of

the amount of communication and computation. In particular, this assump-

tion makes it possible to know which DAG will be used for a particular set of

68 CHAPTER 3. COST FUNCTION

conjuncts in a conjunctive goal. Remember that section 2.4.2 had described

how to handle non-ground bindings. This complication can be ignored when

this assumption is made.

4. Equal frequency assumption: An unknown constant is equally likely to repre-

sent any known constant in the associated domain.

For lack of any more information, this assumption seems as good as any. The

question arises, however, of what to do if more precise information is given

about the probability distribution of the unknown constant values. This the-

sis does not make a contribution here. It should be noted though that this

assumption will be used later to compute the probability of two literals unify-

ing. That computation is completely independent of other parts of this thesis.

Therefore, if techniques are found for taking other probability distributions

into consideration, then they can be used immediately with no change to the

rest of the thesis.

5. Variable independence assumption: During unification of two literals, we as-

sume that each distinct variable varies independently over its domain.

Again, this assumption is made to allow computation of the probability of

unification of two literals. And again, this issue is orthogonal to the rest of

the thesis. Therefore, other techniques for estimating probability may be used

freely.

6. Literal independence assumption: Solutions of individual conjuncts in a con-

junctive goal are independent of each other.

The same comments that applied to the two previous assumptions apply here

as well.

7. Multiple copy clustering assumption: Although multiple copies of a single

partition may be distributed over the set of processors in an arbitrary way, we

consider the restricted case in which all processors in a cluster of processors

contain a copy of the partition (and no other processors contain a copy).

3.1. DEFINITION OF COST FUNCTION 69

This assumption is probably not going to be the best distribution of multiple

copies for all applications. However, for the applications considered in this

thesis, this assumption is reasonable. It will be argued in chapter 4 while

discussing experimental results that this assumption is reasonable for a fairly

wide class of applications—the class of applications in which there is a high

degree of locality of computation. Reasoning about digital hardware seems

to exhibit this locality. Reasoning about other physical artifacts may exhibit

this locality as well.

The alternative of allowing arbitrary locations of copies may not be unfeasible

but leads to more expensive cost computation/recomputation and allocation

search algorithms. Therefore, if it is not necessary, as in the applications

considered in this thesis, then it is best to use the "clustered copies" approach.

8. Multiple copy uniformity assumption: Again, in the general case, multiple

goals associated with the same partition may be distributed in an arbitrary

way over multiple copies of the partition. We consider the restricted case in

which goals are uniformly distributed over the multiple copies. In particular,

the uniform distribution is done by assigning any new goal to a random copy

of the associated partition.

The same comment that applied to the previous assumption applies here as

well.

3.1.3 Cost Function

C, the cost function, takes an allocation as defined in chapter 1 and returns a non-

negative real. Actually, since multiple copies are restricted to clusters as described

above, an allocation can now be restated to be a many-to-one (instead of many-to-

many) mapping of partitions to processors. The processor mapping of a partition is

taken by convention to be the central processor in the associated cluster of copies.

I will now give some motivation for the cost function before defining it formally.

Every parallel computation has an associated parallelism profile, where parallelism

70 CHAPTER 3. COST FUNCTION

Busy
Procesors

Time

Parallelism Profile

Figure 21: Parallelism Profile of a Computation

profile is defined to be the function the gives the number of busy processors versus

time assuming unbounded processors and memory, and instantaneous communica-

tion. Let us say that the profile is as given in figure 21. Now, a lower bound on the

completion time for the computation for any practical multiprocessor is given by

L (because any practical multiprocessor will have a bounded number of processors

and non-zero communication delays). If A is an allocation, a cost function C can

be defined as follows:

C'{A) = L + CC(A) + PMC(A)

where CC(A) (or the communication cost of the allocation) is the additional delay

expected due to non-zero communication delays in a practical multiprocessor and

PMC(A) (or processor multiplexing cost of the allocation) is the additional delay

expected due to sequentialization of parallel computations. Notice that L is inde-

pendent of any allocation. Therefore, if the only purpose of using the cost function

is to compare multiple allocations, a new cost function C can be defined as follows:

C(A) = CC(A) + PMC(A)

3.1. DEFINITION OF COST FUNCTION 71

In general, there is a trade-off between CG and PMC. Allocating all compu-

tation to a single processor makes CG zero. However, PMC is the highest for

this situation since all parallel computation needs to be sequentialized. On the

other hand, if the computation is spread out among as many processors as possible

(assuming for now that there is no shortage of processors), then PMC is lowest.

However, CG is the highest for this situation. Finding a good allocation depends

on finding a good tradeoff between GC and PMC.

Notice that no parallelism is exploited within any given partition. Therefore if

the dataflow* graph is as given in figure 22, where the dashed lines enclose compu-

tation within partitions, then only communication and parallelism across partition

boundaries make contributions to CC and PMC respectively.

3.1.4 Communication Cost Function

CC, the communication cost function, is defined to be the sum of delays of all the

messages that need to be sent. This is an upper bound on the extra delay that

should be expected due to non-zero communication delay. The upper bound will

be reached if all the communication is on the critical path. A closer upper bound

might take parallelism of communication into account and this is explored a bit

in chapter 4. It turns out that the current definition of the communication cost

function works quite well (as will be seen in chapter 4).

Let delay(dt,ds) be the time taken for a message with data size dt to travel

from a source to a destination separated by distance ds. The units for dt and ds

could be bytes and hops respectively, for example. In the FAIM-1 multiprocessor,

extensive simulation has shown [67] that the delay function is expected to be of the

form given below.

delay(dt, i.) = { *' + * X * + *' * * K * > ° (1)
[0 otherwise

where K\,Ki, and A3 are constants. Note that ds = 0 means that the source

and destination processors are the same.

72 CHAPTER 3. COST FUNCTION

Parallelism
Communication

Figure 22: Partitioned Dataflow* Graph

3.1. DEFINITION OF COST FUNCTION 73

Formally, we can say

CC(A)= Y, delay{data{Mi),distance(Mi)) (2)
VAi>€5Af

where SM is the set of messages that need to be sent, and data and distance

are functions that give the data size and distance (between source and destination

processors) of a message.

As will be seen later in the description of the algorithm to compute communi-

cation cost, it is useful to reformulate equation 2 using equation 1 as shown below.

CC{A) = Y,HSD^ (3)

where SDij is the sum of delays for all messages that need to be sent from partition

i to partition j. Now, if these partitions are mapped to the same processor, we have

SDij = 0 (4)

Let us consider the other case in which the two partitions are not mapped to the

same processor. Further, let the distance between the two processors be dist(i,j).

Now,

SDij= 5Z delay(data(Mi)idist(ijj))
VM,eSMPi,j

where SMPij is the set of messages that need to be sent from partition i to partition

j. Substituting from equation 1, we get

SDij = Yl (Ki + K2x dataiMi) + K3 x dist(i,j))
VM,eSMPi,j

Now, let the number of messages sent from partition i to partition j be num(i,j)

and the total amount of data in all these messages be data(i,j). Substituting this

into the above equation gives

SDij = Kx x num(i,j) + K2 x data(i,j) + K3 x num(i,j) x disi(i,j)

In summary, we have the following equations for communication cost:

74 CHAPTER 3. COST FUNCTION

CC(A) = J2Y/SDi,j (5)

SDtj = (6)

Kx x num(i,j) + K2 x data(i,j) + K3 x rcum(i, j) x dist(i,j) if dist(i,j) > 0

0 otherwise

Therefore, to compute the communication cost function, it is sufficient to know

the total number of messages and the total amount of data to be sent between each

ordered pair of partitions. Notice on the right hand side of equation 6 that only

dist(i,j) is dependent on the particular allocation being considered. Therefore, if

a different allocation is considered, very little recomputation needs to be done to

compute SDij and in turn CC.

In case multiple copies of partitions are allowed, there will be some additional

communication between the CP processes and the associated normal-new processes

(see section 2.4.3). Also, if the communication is non-zero, the communication cost

given above in equations 5 and 6 varies linearly with the distance. Therefore, the

additional communication cost can be accounted for very easily by associating it

with a distance that is the expected distance from the central processor of the par-

tition to all other processors that contain copies of the partition. This is reasonable

because the multiple copy uniformity assumption dictates that multiple copies of

partitions are used equally (in a probabilistic sense).

3.1.5 Processor Multiplexing Cost Function

Informally, the processor multiplexing cost function PMC ignores all communication

cost (i.e., assumes instantaneous communication) and increments cost for every

instance in which two tasks could be done in parallel but are assigned to the same

processor.
PMC is defined with respect to a hypothetical world and not the real world.

This hypothetical world can be defined in terms of differences from the real world.

There are two differences:

3.1. DEFINITION OF COST FUNCTION 75

1. Zero communication delays

Messages get transmitted instantaneously in the hypothetical world.

2. Infinite pool of virtual processors for each actual processor

When an actual processor receives a message, it immediately assigns (with

no overhead) a free virtual processor from its pool to process the message.

However, the processing of each message by a virtual processor is done in the

normal sequential manner.

Given this hypothetical world, it is clearly possible to have more than one task

being executed at a particular actual processor at any time. Let us define the

processor-load pUj(t) of an actual processor Pj at time t for top-level goal Gi to be

the number of tasks generated from Gi being executed at Pj at time t. A particular

plij(t) may look like the curve in figure 23. Also, excess-processor-load is defined to

be the excess over 1 of the processor load. In other words,

epkj(t)=max(0,plij(t)-l)

In figure 23, epl{j(t) is the value of ph,j(t) over the y = 1 dashed line. Since there

is only one unit of processing power available at each processor, eplij(t) represents

computation that must be sequentialized. An upper bound on the additional time

taken due to this sequentialization is represented by the shaded area above the y = 1

line. The upper bound is reached if all the computation that must be sequentialized

is on the critical path of the computation. The sum of these shaded areas for all

processors weighted by the top-level goals is defined to be the processor multiplexing

cost. To be more precise,

PMC(A) =]T numgoal(Gi) x £ / eplitj{t)dt (7)
VG.65G .7=1 ^

where SG is the set of top-level goals, numgoal(Gi) is the number associated with

top-level goal Gi, there are q processors named Px... Pq, and epk^{t) is the excess-

processor-load of actual processor Pj considering only top level goal (?;.

76 CHAPTER 3. COST FUNCTION

Time

Figure 23: Processor Load Function

One way to compute the processor multiplexing cost is to first compute what

is necessary for any allocation. Then, additional computation can be done to take

a specific allocation into account. In particular, processor-load can be computed

for each partition assuming it is allocated to a processor separate from any other

partition. The following allocation-specific computation must be done for each top-

level goal and processor. Processor-loads of all partitions that are allocated to a

particular processor Pj for a particular top-level goal G{ must be combined to get

pkj(t). The "shaded-area" computation can now be done for each processor and

top level goal combination and then these can be summed up according to equation

7.

In case there are multiple copies, the processor-load associated with any partic-

ular partition is assumed to be equally distributed over the multiple copies of the

partition in question.

3.2 Strategy for Computing Cost Function

To compute the cost function exactly requires doing the run-time computation at

compile-time. Since this is clearly senseless, we restrict compile-time computation

to reasoning about an abstraction of the run-time computation, an abstraction in

3.2. STRATEGY FOR COMPUTING COST FUNCTION 77

which specific constants of the facts in the database are ignored. The hope, of

course, is that the approximation to the run-time computation is close enough to

get meaningful numbers from the analysis. In addition, it is hoped that much less

computation needs to be done to reason with the abstraction instead of the real

run-time computation.

Figure 24 illustrates how fact patterns with unknown constants replace facts with

actual constants in the database. Symbols beginning with "uc" represent unknown

constants. The crossed out facts are the ones in the original database. Figure 25

illustrates that using fact patterns reduces the number of logical inferences. Logical

inferences enclosed in thick ovals may be collapsed into one logical inference at

compile-time. In the best case, the number of logical inferences may be reduced by

an exponential factor. Figure 26 shows a conjunctive goal with 3 conjuncts. If there

are n facts with the a predicate, n2 facts with the b predicate, and ra3 facts with

the c predicate, then the number of logical inferences at run-time is (n + n2 + n3)

or 0(n3). In general, for m conjuncts, the number of logical inferences would be

0(nm). However, if the facts of each predicate get represented by a single compile-

time fact, then the number of logical inferences at compile-time is only 3. In general,

for m conjuncts, the number of compile-time inferences is only 0(m). Therefore,

the number of logical inferences is reduced by an exponential factor from 0(nm) to

0(m).

One effect of using unknown constants is that unification is now a probabilistic

process. It does not just succeed or fail; it succeeds with some probability. This

will be discussed in more detail in section 3.3.

Another computation-saving technique used in the cost computation procedures

is to separate out the allocation-independent computation from the allocation-

dependent computation. The allocation-independent computation needs to be per-

formed only once for the application. Only the allocation-dependent computation

needs to be performed when a specific allocation is being considered. In addition,

when an allocation is changed slightly, even the allocation-specific computation need

not be performed from scratch. Useful state can be saved between recomputations

and this can lead to significant savings.

78 CHAPTER 3. COST FUNCTION

r(X,Y):- p(X),q(Y),s(X,Y).

2 p(uc)

q(Y) :- m(X),n(X,Y).

2 m(uc).

>¥ Ä

2 n(ud,uc2).

2 s(uc1,uc2)

Figure 24: Compile-time Database

3.2. STRATEGY FOR COMPUTING COST FUNCTION 79

Figure 25: Compile-time Computation

80 CHAPTER 3. COST FUNCTION

a(X) b(X,Y) c(X,2)

Figure 26: Exponential Savings at Compile-time

In the case of communication cost computation, the number of messages and

the amount of data between each pair of partitions is independent of the alloca-

tion. Only, the distance between partitions is dependent on the allocation being

considered.

In the case of processor multiplexing cost computation, the processor-load func-

tions associated with each partition (assuming that they are allocated to separate

processors) are independent of the allocation. Combining processor-loads of differ-

ent partitions does depend on the allocation. However, useful state can be kept

between recomputations to save on computational effort (as will be seen later in

section 3.4).

An alternative to this approach of estimating the amounts of communication

and processor-loads at compile-time is to gather information from one or more runs

of the application and collect this information for use by the cost computation pro-

cedures. One can also think of hybrid approaches in which compile-time estimates

may be modified (if necessary) by data collected at run-time. The advantage with

using run-time data is that one does not depend on assumptions that may not be

totally accurate (required to do compile-time estimation and listed in section 3.1.2).

However, the disadvantage is that the estimates may get unduly influenced by the

last run or last several runs. Also, making several runs of the application can be

much more expensive (depending on the number of runs) than making one run using

unknown constants.

3.3. COMMUNICATION COST COMPUTATION 81

3.3 Communication Cost Computation

The algorithms described in this section axe for computing the communication cost

for a single top-level goal. If there are multiple top-level goals, then the algorithms

need to be repeated for each top-level goal and the costs summed. Also, if a certain

top-level goal is repeated multiple times, the communication cost is computed for a

single instance and the communication cost for the multiple instances is computed

by multiplying the single instance cost by the repetition factor.

The computation of communication cost is done by two algorithms. The first

algorithm is called the Communication Estimation algorithm. This algorithm per-

forms an abstract simulation of PM. A side-effect of the simulation is the estimation

of the amount of communication (in total bytes and number of messages) between

every pair of partitions. The second algorithm is called the Communication Cost

Computation algorithm. This algorithm takes the output of the Communication

Estimation algorithm and an allocation and computes the communication cost.

The Communication Estimation algorithm is based on the idea of simulating

(at compile-time) a backward-chaining deduction using PM as the execution model.

The difference from the actual run-time computation is that the compile-time simu-

lation is less detailed and, therefore, takes less time than the run-time computation.

Probabilistic analysis replaces some of the detailed computation and most of the

description of the algorithm focuses on this analysis.

The organization of this section is as follows. Subsection 3.3.1 gives the spec-

ifications of the communication estimation algorithm. The next three subsections

lay down the basis of the probabilistic analysis. Subsection 3.3.2 describes how

goals may be viewed as probabilistic filters over their solution domains. Subsection

3.3.3 describes how the probability of unification of two literals may be estimated

when the exact constants in the literals are not known at compile-time. Subsection

3.3.4 describes how run-time messages must be augmented to make them suitable

for the probabilistic analysis. The next two subsections describe two variants of

the Communication Estimation algorithm. Subsection 3.3.5 describes the simpler

variant that does not deal with duplicate solutions while the next two subsections

82 CHAPTER 3. COST FUNCTION

show how duplicate solutions can be handled.

The Communication Cost Computation algorithm is trivial compared to the

Communication Estimation algorithm. After the Communication Estimation algo-

rithm has produced an estimate of the amount of communication between every

ordered pair of partitions, the communication cost algorithm simply uses this in-

formation and equations 5 and 6 to compute the communication cost. Since the

algorithm is so simple, it will not be described in any more detail.

Finally, subsection 3.3.8 discusses the complexity of both the Communication

Estimation algorithms and the Communication Cost Computation algorithm.

3.3.1 Specification of Communication Estimation Algorithm

Inputs

1. F: a set of fact patterns.

2. R: a set of rules.

3. G: a set of goal patterns.

4. P: a set of subsets of Rl) F that are mutually exclusive and exhaustive. Each

member of P is called a partition. Remember that a constraint of PM is

that all clauses that may be applied to reducing any particular literal subgoal

generated during the backward-chaining deduction should be included in pre-

cisely one partition. Note that we are talking about a single logical inference

here, not a goal reduction involving an arbitrary number of logical inferences.

As an example, there could be one member of P for each set of facts and rules

with a different predicate.

5. domsize: a two argument function that takes a predicate name and a number

specifying a field and returns the associated domain size. For example, if

parent(X,Y) indicates that X is a parent of Y, then domsize(parent, 1) = 2

since every person has two parents. Also, if the average number of children in

a family is 3, we might say that domsize(parent,2) = 3.

3.3. COMMUNICATION COST COMPUTATION 81

3.3 Communication Cost Computation

The algorithms described in this section are for computing the communication cost

for a single top-level goal. If there are multiple top-level goals, then the algorithms

need to be repeated for each top-level goal and the costs summed. Also, if a certain

top-level goal is repeated multiple times, the communication cost is computed for a

single instance and the communication cost for the multiple instances is computed

by multiplying the single instance cost by the repetition factor.

The computation of communication cost is done by two algorithms. The first

algorithm is called the Communication Estimation algorithm. This algorithm per-

forms an abstract simulation of PM. A side-effect of the simulation is the estimation

of the amount of communication (in total bytes and number of messages) between

every pair of partitions. The second algorithm is called the Communication Cost

Computation algorithm. This algorithm takes the output of the Communication

Estimation algorithm and an allocation and computes the communication cost.

The Communication Estimation algorithm is based on the idea of simulating

(at compile-time) a backward-chaining deduction using PM as the execution model.

The difference from the actual run-time computation is that the compile-time simu-

lation is less detailed and, therefore, takes less time than the run-time computation.

Probabilistic analysis replaces some of the detailed computation and most of the

description of the algorithm focuses on this analysis.

The organization of this section is as follows. Subsection 3.3.1 gives the spec-

ifications of the communication estimation algorithm. The next three subsections

lay down the basis of the probabilistic analysis. Subsection 3.3.2 describes how

goals may be viewed as probabilistic filters over their solution domains. Subsection

3.3.3 describes how the probability of unification of two literals may be estimated

when the exact constants in the literals are not known at compile-time. Subsection

3.3.4 describes how run-time messages must be augmented to make them suitable

for the probabilistic analysis. The next two subsections describe two variants of

the Communication Estimation algorithm. Subsection 3.3.5 describes the simpler

variant that does not deal with duplicate solutions while the next two subsections

3.3. COMMUNICATION COST COMPUTATION 83

Output

• C: a function that takes two partitions Pi and P2 and returns a tuple of

the form < data, number > where data is the amount of data (in bytes) and

number is the number of messages sent from partition Pi to partition P2. data

and number are expected values in a probabilistic sense.

3.3.2 Goals as Filters

Each goal, be it a literal or a conjunction of literals, can be characterized as a filter

over its solution domain. Filter probability is defined to be the probability that a

random member of the set of possible solutions is a member of the set of actual

solutions.

The cardinality of the domain of possible solutions (of a literal goal or a con-

junctive goal), Np, is given by the following equation:

NP = n d&) (8)
vieV

where V is the set of variables in the goal and d(X) is the size of the domain of

variable X. This formula assumes that if the same variable occurs more than once

in a single conjunct or in more than one conjunct in a conjunctive goal, then its

domain is the same for each occurrence.

If the number of actual solutions is JVa, then the filter probability, PP, is given

by

FP = T, P»)
By using the literal independence assumption, it follows directly that the filter of

a conjunctive goal is equal to the product of the filters of the individual conjuncts.

In other words, the expected number of solutions N to a conjunctive goal

C = {Ci, C2,..., Cn}

is given by

84 CHAPTER 3. COST FUNCTION

N = Npxf[FP(Ci) (10)

where Np is the number of possible solutions and FP(d) is the filter probability of

conjunct C{. Plugging in the value of Np from equation 8, we get

N=J[d(vi)xf[FF(Ci) (11)

where V and d are as defined before. This is an important equation because it

makes the Communication Estimation algorithm particularly simple as will be seen

later.
As an example of the application of this equation, see figure 27. A 3-conjunct

goal has to be solved with the database and domain sizes as given. In this example,

Np = d(X) x d(Y) x d(Z) = 12 x 4 x 2 = 96

Also, the filter probabilities of the three conjuncts can be computed as foUows. The

filter probability of "a(X)" is its actual number of solutions (= 6) divided by its

potential number of solutions (= d(X) = 12), which is 0.5. The filter probability of

«b(X,Y)" is its actual number of solutions (= 24) divided by it potential number

of solutions (= d(X) x d(Y) = 12 x 4 = 48), which is 0.5. The filter probability of

«c(X,Z)" is its actual number of solutions (= 8) divided by its potential number of

solutions (= d(X) x d(Z) = 12 x 2 = 24), which is 0.33. Therefore, using equation

11, we get

N = n <wx n Fpw

= 96xf[FP(Ci)
t=i

96 x 0.5 x 0.5 x 0.33 = 8

Now, we carry this analysis a step further. Each conjunct in a conjunctive

goal may actually be reduced by more than one rule or by more than one fact.

Therefore, more than one path of reasoning may lead to actual solutions for the

conjunct. Each such path of reasoning, or a set of such paths of reasoning considered

3.3. COMMUNICATION COST COMPUTATION 85

AN»???

Database Domain sizes

6 a(ucl). d(X) = 12

24 b(uc2,uc3). d(Y) = 4

8 c(uc4,uc5). d(Z) = 2

Figure 27: Predicting Communication

86 CHAPTER 3. COST FUNCTION

together, may lead to a particular set of actual solutions. This particular set of

actual solutions will be a subset of the complete set of actual solutions but can

be characterized as a filter nonetheless. Of course, the filter probability associated

with a conjunct, considering only a subset of the paths of reasoning, will be less

than or equal to the filter probability associated with the conjunct when all the

paths of reasoning are considered. Due to the literal independence assumption, this

filter probability associated with a conjunctive goal will be a product of the filter

probabilities associated with the individual conjuncts for the same subset of the

actual solutions.

3.3.3 Probability of Unification

This section describes how one can compute the probability of unification of two

literals. Each literal can contain unknown constants. During unification, variables,

constants and unknown constants may be unified against each other. A valid unify-

ing substitution may contain bindings of: (1) variables to either variables, unknown

constants, or constants, and/or (2) unknown constants to either unknown constants

or constants. Of course, constants to be unified must match exactly.

Table 1 gives the probabilities of these unifications. In the table, d(uci), where

uci is an unknown constant, refers to the domain size (given by the function

domsize) of the field of the relation that uci is associated with. The probabil-

ity of unification of the two literals is simply the product of the probabilities of

unifications of the type given in the table. Taking a product is justified by the

argument independence assumption. Similar probabilistic analysis has been used

before by Treitel in his work on selecting the optimal mix of forward and backward

inference for a sequential processor [69].

As an example, consider the unification of the two literals a(ucl,uc2,uc3) and

a(X,X,cl). In this case, uci and uc2 must be unifiable and the probability of this

can be found from table 1 to be ^ = ^ Notice that the domain sizes of the

two unknown constants have been assumed to be equal. Also, ucZ must be unifiable

with cl and the probability of this can be found from the table to be 1^. The

3.3. COMMUNICATION COST COMPUTATION 87

V1

d

uc1

V2 c2 uc2

1 1 1

1

1 (if c1=c2)

0(ifd*c2)

1

d(uc2)

1
1

d(üci)

1

d(üci)
1

= d(üc2)

Table 1: Probabilities of Unification

probability of unification of the two literals is the product of these two probabilities.

As another example, consider figure 27 again. Remember that back in chapter

2, we had proved a theorem that stated that the set of solutions produced by PM

is equal to the set of solutions produced by a Prolog interpreter. Of course, this

theorem also implies that the cardinalities of the sets of solutions must be equal

in the two cases. In section 3.3.2, we saw that applying equation 11 had given the

number of solutions of the conjunctive goal in figure 27 to be 8. Now, we can get the

number of solutions by using a total order of conjuncts as in a Prolog interpreter

and using table 1 directly and show that we get the same number of solutions. In

particular, a Prolog interpreter might use a total order like the one shown in figure

28. The number of-solutions of the first conjunct will be 6 because there are 6

"a" facts in the database and the variable X in the goal unifies with probability

1 with ucl in the facts. Next, the variable X in the second conjunct gets bound

to an unknown constant. The probability of unification of the "b" conjunct with

the "b" facts in the database is the inverse of the domain size of the first field of

the "b" relation (= d(X) = 12 in figure 28) since an unknown constant is getting

88 CHAPTER 3. COST FUNCTION

fi 12
a(X) ► b(X,Y)

Database

6 a(ucl).

24 b(uc2,uc3).

8 c(uc4,uc5).

24

8

Domain sizes
d(X) = 12

d(Y) = 4

d(Z) = 2

Figure 28: Estimating Number of Solutions for Prolog

unified with another unknown constant. Since there are 6 "b" goals, 24 "b" facts

in the database, and the probability of unification is i, the expected number of

solutions of the first two conjuncts is 6 x 24 x £ = 12. Next, variable X in the

"c" conjunct gets bound to an unknown constant. The probability of unification of

the "c" goals with the "c" facts is the inverse of the domain size of the first field

of the V relation (= d(X) = 12) since an unknown constant must be unified with

another unknown constant. Since there are 12 V goals, 8 V facts in the database,

and the probability of unification is i, the expected number of solutions of all three

conjuncts together is 12 x 8 x £ = 8. This is the same as the number obtained by

applying equation 11. This technique of finding the expected number of solutions

of a set of conjuncts by mapping it back repeatedly to the Prolog case can lead to

very inelegant and inefficient algorithms. Using equation 11 directly turns out to

be much simpler (as will be seen later in section 3.3.5).

3.3. COMMUNICATION COST COMPUTATION 89

3.3.4 Compile-time Messages

As mentioned before, the communication estimation algorithm is based on the idea

of simulating (at compile-time) a backward-chaining deduction using PM as the ex-

ecution model. The difference from run-time deduction is that unknown constants

may be used at compile-time. For now, assume that a message in PM contains

substitutions only. The initial behavioral description of PM made the same simpli-

fication. However, at compile-time, a message contains some additional information.

First, a substitution with unknown constants represents an equivalent class of

actual substitutions with actual constants only. Each member of the equivalent

class is obtained by giving each unknown constant a value in its domain. A compile-

time message is associated with a number called the number of substitutions. This

number represents how many instances of the compile-time message's equivalent

class are expected (in the probabilistic sense) to be sent on the associated channel at

run-time. Note that at run-time each message is treated completely independently.

For example, when a new conjunct graph is created to solve a subgoal at run-time,

a single message is sent to the head process of the new conjunct graph along its

task channel. At compile-time, if the same message has an associated number of

substitutions of N, then N separate conjunct graphs would actually be generated

at run-time, each with its own message on the task channel to the head process.

The advantage of using the unknown constant abstraction is that it allows the

algorithm to estimate communication cost without doing the entire deduction itself.

Also, if the goal for the entire deduction is specified using unknown constants, the

expected communication costs for the entire class of goals represented is computed

in one pass. In contrast, the run-time execution model can only handle one specific

goal at a time.

Second, a compile-time message is associated with a filter set. A filter set is a set

of 2-tuples. There is one such 2-tuple for each literal that has been processed so far

in the conjunct graph. Each tuple contains: (1) a number indicating the position

(leftmost being 1) of the literal in the antecedents of the rule that generated the

associated conjunct graph and (2) the filter probability for that literal that led to

the set of substitutions described by the compile-time message.

90 CHAPTER 3. COST FUNCTION

In addition, each message on each channel in a conjunct graph contains the initial

number of substitutions for the conjunct graph. The initial number of substitutions

is the number of substitutions sent on the task channel of the head process to

the complete conjunct graph. A complete conjunct graph is defined to mean a two-

terminal DAG of processes that includes a matching pair of Head and Tail processes

and all the normal processes in between.

Considering everything, a compile-time message is a 4-tuple:

<N,S,NI,FS>

where N is the number of substitutions, S is the substitution, NI is the initial

number of substitutions and FS is the filter set.

Each compile-time message is associated with a particular channel in the dataflow*

graph during simulated deduction. The source node and the destination node of

the channel are associated with one database partition each. The compile-time

message contributes to the amount of communication between this pair of database

partitions. The amount of data is

data(S) x N

where data(S) is the amount of data (in bytes, say) that will be contained in the

substitution at run-time that 5 represents. (5 itself may contain unknown con-

stants each of which represents a known atomic constant at run-time.) The number

of messages to be sent is JV, the number of substitutions. The total amount of

communication between a pair of partitions is the sum of contributions from each

message.

Section 3.3.5 describes the algorithm to compute the amount of communication

between each pair of partitions for a single goal. If multiple goals are given, the

algorithm must be repeated for each goal and the amounts of communication added

up. This algorithm follows quite naturally from the ideas in sections 3.3.2, 3.3.3,

and 3.3.4. It may be skipped without loss of continuity in the thesis. The interested

reader can return to this section later for more detail.

*A message at run-time is a substitution at this level of detail.

3.3. COMMUNICATION COST COMPUTATION 91

3.3.5 Communication Estimation Algorithm (No Duplicates)

This section presents the behavioral description of the simulated parallel execution

model. The description is similar in nature to the behavioral description of PM

contained in section 2.3.2. The only difference is that the behavioral description

of PM dealt with actual messages whereas simulated PM deals with compile-time

messages. As explained before, the set of compile-time messages that is generated

during simulated deduction contains sufficient information to compute the amount

of expected communication between each pair of partitions.

The description is divided into four parts as before: (1) Sim-CP—the analog

of the CP function of PM, (2) the response of a normal process to each compile-

time message on its virtual input channel, (3) the response of a tail process to each

compile-time message on its virtual input channel, and (4) the response of a normal

process to each compile-time message on each of its subsolution channels.

A running example to make the explanations clearer is shown in figure 29. This is

the same example as the one that was considered in chapter 2 except that unknown

constants have been used for the facts. Also, the NF numbers to the right of the

facts indicate how many facts of that pattern are present in the database. The

dataflow* graph for the simulated deduction is shown in figure 30. Each compile-

time message on each channel is shown in the figure. Only one compile-time message

is sent on each channel for this example. This is not true for all cases. We will

assume for this example that the cardinality of the domain of each variable and

unknown constant is 2.

3.3.5.1 Analog of the CP function

As described in chapter 2, the function CP takes n sets of substitutions—a set for

each input channel of a normal process—and returns a single set of substitutions.

The output set of substitutions is the one carried on the hypothetical virtual input

channel of the normal process in question. CP considers the cartesian product of

the input sets and rejects all inconsistent composite substitutions using an auxiliary

function called Merge.

92 CHAPTER 3. COST FUNCTION

r(X,Y):-p(X),q(Y),s(X,Y)

p(ud) NF=2
q(Y):- m(X), n(X.Y)
m(uc2) NF=2
n(uc3,uc4) NF=2
s(uc5,uc6) NF=2

r(X,Y) is the top level goal

Figure 29: Example Database

Sim-CP, the simulated deduction version of CP, considers the cartesian product

of sets of compile-time messages and rejects composite messages that contain incon-

sistent substitutions. The point of departure from CP is Sim-Merge, the simulated

deduction version of Merge. Sim-Merge must determine consistency of substitu-

tions as before. However, in addition to that, it must compute the other fields of a

compile-time message. In particular, these fields are number of substitutions, initial

number of substitutions and filter set.

Let there be n input channels for the normal process in question. Sim-Merge

takes one compile-time message from each channel and either returns a compile-

time message or 1-a special element. The special element is used to indicate

inconsistent input substitutions just as Merge did. Let the compile-time message

on the ith channel be

<Ni,Si,NI,FSi>

In case the input compile-time messages contain inconsistent substitutions, then

the output of Sim-Merge is J_. Substitutions are inconsistent if the same variable

is bound to different known constants. Variables bound to different unknown con-

stants are not inconsistent.

If the output is not J., it is a compile-time message

<N0,S0,NI,FSo>

3.3. COMMUNICATION COST COMPUTATION 93

<1.{}.1.{}>

11 <1.{}.1.0>1 T <2,{X=uc1,XUuc2,Y-uc4},1,{<1,0.5>}>

H/T

r(X,Y)

!1.0.1.0>

<1.{}.1.{}>
<1.0.1,{}=

<2,{},2,{}>

PWY^

<2,{X-uc1 ,X1 =uc2,Y«uc4},1 ,{<1,0.5>}>

<2,{X«uc1,X1=uc2,Y=uc4},1,{<1,1>,<2,1>,<3,0.5>}>

H/T
g2.(X=uc1.X1=uc2.Y=uc4),1.(<1.1>.<2 1>,<3,0.5>)>

<2,(X-uc1),1,{<1,1>}>

q(Y)

<2,{X-uc1},2,{}>

H/T

=1.{}.1,{}>rl

L,
<2,{XUuc2,Y-uc4},

1,{<2,1>}>

S(X,Y)

<2.{},2.{}> <2.{}.2,{}>

H/T

sm-<4,{X«uc1 ,X1 =uc3,Y-uc4},1 ,{<1,1 >,<2,1 >}>

i2,{X1 -uc2,Y-uc4},1 ,{<1.1 >,<2,0.5>}>

H/T

<1.0.1.{}> <2,{X1-uc2,Y-uc4},1.{<1.1>,<2,0.5>}>

^(xT^ <2,{X1-uc2},1,{<1,1>}3
n(X1,Y)r—I

<2.{}.2,{}> <2,{X1-uc2},2,{}> <2,{},2,{}>

H/T

<2,{Y=.uc4},2,{}>

H/T

Figure 30: Dataflow* Graph for Simulated Deduction

94 CHAPTER 3. COST FUNCTION

Since a filter set contains filter tuples for each ancestor conjunct, we have

FS0 = Ü FSi (12)
t=i

Union removes duplicate filter tuples. Duplicates can arise because the same con-

junct may be an ancestor from more than one input channel.

Since we are presumably considering one conjunct graph (that may be instanti-

ated a number of times at run-time), all messages in that conjunct graph have the

same initial number of substitutions.

Equation 11 (in section 3.3.2) showed how the expected number of solutions for

a set of conjuncts could be computed. Notice that each compile-time message in

the set returned by Sim-CP is a solution of the set of conjuncts associated with

the ancestor processes of the normal process being considered. Therefore, for each

initial substitution for the conjunct graph, the expected number of solutions of

the ancestor conjuncts, Nint, that will be generated by Sim-Merge is given by the

equation:

Nint = n d&) * n w <13)
i/i€V FPiZFPSo

where V is the union of the sets of bound variables in the substitutions of the input

messages and FPS0 is the set of filter probabilities contained in the filter tuples

belonging to FS0. For example, if

F50 = {<1,.5>,<2,.75>}

where < 1, .5 > indicates that the filter probability of the first literal is .5, then

FPS0 = {.5, .75}

Moreover, the total expected number of solutions, N0, will be given by the

equation:

N0 = Nix Nint (14)

3.3. COMMUNICATION COST COMPUTATION 95

Plugging equation 13 into equation 14, we get

N0=Ni x n d(Vi) x n Fpi (is)
u,-6V FPitFPS

Figure 30 shows this computation for the as(X,Y)" box. The input compile-time

messages are

<2,{X = ticl},l,<l,l > >

and

< 2, {XI = uc3, Y = ucA}, 1, {< 2,1 >} >

Equation 12 is used to compute FS0.

FS0=[jFSi = {<l,l>,<2,l>}
»=i

Equation 15 is used to compute N0.

N0 = Nix n d{vi) x II Fpi = d(X) x d(Y) xlxl = 2x2 = 4
vi€V FPi€FPS

Since the substitutions are consistent, S0 is obtained by taking the union of the two

input substitutions.

S0 = {X = ucl,Xl = uc3,y = uc4}

3.3.5.2 Response of Normal Process to Compile-time Messages on Vir-

tual Input Channel

In real PM, each message on a virtual input channel contains a substitution and

this substitution applied to the literal associated with the normal process represents

a goal to solve. Rules and facts associated with the normal process are applied to

the goal in an attempt to reduce or solve it. The rest of this section describes the

behavior of the process for one of these applicable rules/facts. The same behavior

is repeated for each rule/fact.

Let the compile-time message on the virtual input channel be

<Ni,Si,NIi,FSi>

96 CHAPTER 3. COST FUNCTION

and the compile-time message on the subtask channel be

<N0,S0,NI0,FS0>

The total number of actual messages represented by the input compile-time

message is N{. Some of the associated goals will unify with the literal representing

the head of the rule or the fact. The probability of unification can be computed

as shown in section 3.3.3. Let PU be this probability. The number of successful

unifications, N0, in case a rule is used is given by the equation:

N0 = NixPU (16)

In case we are dealing with a fact (as opposed to a rule) and the number associated

with the fact is NF, then the number of successful unifications, N0, is given by the

equation:
N0 = NiXPUx NF (17)

Also, NI0 will be equal to N0. S0 = {} and FS0 = {} because no conjunct in the

new conjunct graph will have been been solved as yet. The invocation substitution

is associated with the tail process of the conjunct graph as described in chapter 2.

The head process of the new conjunct graph passes this message unchanged to

each of its output channels.
As an example, look in figure 30 at the response of the "s(X,Y)" process to the

compile-time message on its virtual input channel. This message is

< 4,{JC =ucl,Xl = ucZ,Y = -uc4},l,{< 1,1 >,< 2,1 >} >

Since the domain of each variable X and Y is 2, the probability of unification, PU,

of the goal "stud^)" with the fact "s(uc5,uc6)" is

Therefore, using equation 17

No = NixPUxNF = 4x 0.25 x 2 = 2

NI0 is equal to N0.

FS0 = {}

3.3. COMMUNICATION COST COMPUTATION 97

3.3.5.3 Response of Tail Process to Compile-time Messages on Virtual

Input Channel

Let the compile-time message on the input channel be

<Ni,Si,NIi,FSi>

and the compile-time message on the task channel be

<N0,S0,NI0,FS0>

Since the tail process does not solve any goal as such, N0 = N{, NI0 = JV7,-, and

FS0 — FSi. The only difference is that

S0 = Composition(IS, 5,)

where IS is the invocation substitution.2

As an example, look in figure 30 at the response of the tail process below

"n(Xl,Y)" to the message on its input channel. The message is

< 2,{},2,{} >

Notice that, in this case, since there is only one input to the tail process, the virtual

input channel is the same as the input channel. The invocation substitution is

{Y = uc4}. Therefore,

S0 = Composition({Y = uc4},{}) = {Y = uc4}

The rest of the components of the message on the solution channel are the same as

the ones for the message on the input channel.

3.3.5.4 Response of Normal Process to Compile-time Messages on Sub-

solution Channels

In this case, the computation depends on the compile-time message (on the virtual

input channel to the normal process) that is associated with the solution being

reported (on the subsolution channel). Let this compile-time message be
2 See chapter 2 for a description of invocation substitution.

98 CHAPTER 3. COST FUNCTION

<N1,SUNIUFS1>

Also, let the compile-time message on the subsolution channel be

<N2,S2,NI2,FS2>

and the compüe-time message on the output channel from the normal process be

<N3,S3,NI3,FS3>

First, since the message on the output channel is associated with the same

conjunct graph, we have

Nh = Nh (18)

Second, just as in real PM,

53 = Composition(S\, S2) U")

Since the total number of messages on the subsolution channel must be the same

as the total number of messages on the output channel of the normal process,

N3 = N2 (20)

For each real message on the virtual input channel, the cardinality of the domain

of possible solutions is

n dw
where V is the set of variables in the goal literal (i.e., the literal obtained by instan-

tiating the literal associated with the normal process with the substitution on the

virtual input channel). Therefore, the number of possible solutions for N, messages

is

Nx x n d(v<)

3.3. COMMUNICATION COST COMPUTATION 99

However, the actual number of solutions obtained is N3. Therefore, the filter prob-

ability (FP) associated with this set of solutions is given by the equation

FP = „ 3 ,, x (21)

The filter tuple (FT) associated with this is < n,FP >, where n is the position of

the literal associated with the process in the antecedents of the rule that generated

the conjunct graph. Therefore,

FS3 = FSx U {FT}

As an example, look in figure 30 at process "n(Xl,Y)". In this case,

< NuSuNI^FSi >=< 2, {XI = uc2},l,{< 1,1 >} >

< N2,S2, NI2, FS2 >=< 2, {Y = uc4}, 2, {} >

Therefore, from equation 19, we have

S0 = Camposiiion({Xl = uc2}, {Y = uc4}) = {XI = uc2, Y = uc4}

From equation 18, we have

NI3 = Nh = 1

Also, equation 20 gives us

N3 = N2 = 2

The filter probability of the conjunct "n(X,Y)" for this compile-time message is

given by equation 21

FP= *2 = ^- = 05
NixUVievd(vi) 2x2

because the only variable in the goal is "Y" and its domain is 2. Therefore,

FS0 = {< 1,1 >,< 2,0.5 >}

100 CHAPTER 3. COST FUNCTION

3.3.6 Strategy for Dealing with Duplicate Solutions

Some rules can generate duplicate solutions to a goal. This can happen if a variable

occurs in the tail of the rule but not in its head. For example, consider the rule

h(X,Z):-tl(X,Y),t2(Y,Z)

If the subgoal tl(X, Y) produced the two solutions {X = 3, Y = 5} and {X -

3, Y = 6} and the subgoal t2(Y, Z) produced the two solutions [Y = 5, Z = 8} and

{Y = 6,Z = 8}, then {X = 3, Z = 8} would appear twice as a solution for h(X, Z).

The communication estimation algorithm presented so far has to be modified if

duplicates of this form are to be considered.

One more piece of information—a duplication bag—needs to be associated with

each compile-time message. The duplication bag associated with a compile-time

message includes the duplication factors of all the conjuncts that have been pro-

cessed so far in the conjunct graph. A duplication factor for any particular conjunct

in a conjunctive goal is a number, greater than or equal to one, and is a probabilistic

measure of how many actual solutions are produced for each unique, actual solution

of that conjunct. Therefore, if the duplication factor is 3 and we expect the total

number of solutions generated to be 5, then we expect 5/3 = 1.67 of them (proba-

bilistically) to be unique. In the example given above, the literal goal that is solved

by the given rule would have the duplication factor 2.0 associated with the solution

{X = 3, Z = 8}. Conjuncts that are ancestors along more than one path will have

as many copies of their duplication factors in the duplication bag. This is the reason

a duplication bag is a bag and not a set Just like a filter set, a duplication bag

contains 2-tuples, one for each literal in the antecedent of the rule that generated

the associated conjunct graph. Each tuple contains: (1) a number indicating the

position (leftmost being 1) of the literal in the antecedents of the rule and (2) the

duplication factor for the literal that led to the set of substitutions associated with

the compile-time message.
Just as equation 11 (reproduced below as equation 22) led to a particularly

simple formulation of the Communication Estimation algorithm for the no duplicate

solutions case, there is a similar equation for the duplicate solutions case.

3.3. COMMUNICATION COST COMPUTATION 101

N= n divi)xf[FP(Ci) (22)

The number of solutions N for a set of conjuncts (taking duplicates into account)

is given by the equation below:

N=H d(Vi) x n FP(d) x n *>& (23)
v.€V t=l DFteDFB

where V is the set of variable in the conjunctive goal, d{X) gives the size of the

domain of variable X, FP(d) is the filter probability of conjunct Ct, and DFB

is the duplication factor bag of the set of conjuncts. The duplication factor bag is

the bag of duplication factors associated with the set of conjuncts. The number of

instances of each duplication factor in the duplication factor bag is the number of

distinct paths from the associated conjunct to the Tail process associated with the

conjunctive goal. For example, in figure 31, there are 2 instances of the duplication

factor associated with "a" and 1 instance each of the duplication factors associated

with "b" and "c" in the duplication factor bag for the conjunctive goal. If the

duplication factors of the 3 conjuncts a, b, and c are DFX, DF2, and DF3 respectively,

then the duplication factor bag for the conjunctive goal is $DF1,DFi,DF2,DF3 1

In this case,

IJ DF = DFl x DFt x DF3
DFitDFB

In particular, if DFX = 2, DF2 = 1, and DF3 = 1, then

IJ DFi = 22 x 1 x 1 = 4
DFitDFB

In other words, four copies should be expected (on the average) for each unique

solution of the conjunctive goal.

Again, just as in the Communication Estimation Algorithm (with no duplicates),

the algorithm with duplicates follows naturally from the formulation of the problem

given in this section. The detail in section 3.3.7 may be skipped safely on the first

reading of the dissertation with no loss of continuity. Interested readers may return

later for more detail.

102 CHAPTER 3. COST FUNCTION

Figure 31: A Conjunctive Goal

3.3.7 Communication Estimation Algorithm (with Dupli-

cates)

The description of the algorithm is divided into four parts just as it was done for

the no duplicate case. Also, only the differences from the no duplicate case will be

explained.

3.3.7.1 Analog of the CP function

There are n input channels and the messages on the channels are

<NitSi,NI,FSi,DBi>

In case, the messages contain inconsistent substitutions, then the output is _L

as before. If the output is not J_, it is a message

<N0,S0,NI,FS0,DB0>

Notice that the initial number of substitutions is the same for the input messages

as the output message because all of them belong to the same conjunct graph.

As before,

FS0 = Ü FSt
t=i

However,
n

DB0 = ®DBi
«=i

3.3. COMMUNICATION COST COMPUTATION 103

where the symbol ® denotes bag sum.

The expected number of solutions for each initial substitution of the conjunct

graph, Nint, is given by an application of equation 23:

Nint = n d(Vi) x H FPtx IJ DFt
«,€V FPitFPS DFiZDFBo

where DFB0, the duplication factor bag, is the bag of duplication factors in the

duplication tuples belonging to DB0. For example, if the duplication bag is [<

1,1.5 >,< 1,1.5 >,< 2,3.5 > 2, where 1.5 is the duplication factor for the first

conjunct and 3.5 is the duplication factor for the second conjunct, then the dupli-

cation factor bag is Ü.5,1.5,3.5 1 Notice the slight variation from equation 13 for

the no duplicate case.

The formula above gave the expected number of solutions for each initial sub-

stitution. Therefore, the total expected number of solutions, N0, is given by

N0=Ni x n d(vi) x n ppix n DF
<

«,€V FPiGFPS DF&DFB

3.3.7.2 Response of Normal Process to Compile-Time Messages on Vir-
tual Input Channel

Let the compile-time message on the virtual input channel be

KN^S^NI^FS^DB^

and the compile-time message on the subtask channel be

<N0,S0,NI0,FS0,DB)0>

In case, a rule is used to reduce the goal,

N0 = NiX PU

where PU is the probability of unification of the goal with the head of the rule.

In case, a fact, with an associated number of NF, is used to reduce the goal,

N0 = Ni xPUxNF

104 CHAPTER 3. COST FUNCTION

where PU is the probability of unification of the goal with the fact. Again, we have

NIn = N0 i0 — -"o

Also,

£> = {}

FS0 = {}

DB0 = O

IE] stands for an empty bag.

3.3.7.3 Response of Tail Process to Compile-Time Messages on Virtual

Input Channel

Let the compile-time message on the input channel be

<Ni,Si,NIi,FSi,DBi>

and the compile-time message on the task channel be

<N0,S0,NI0,FS0,DB0>

As before,

In addition,

N0 = Ni

S0 = Composition(IS, Si)

NI0 = Nli

FS0 = FSi

DB0 = DB{

3.3. COMMUNICATION COST COMPUTATION 105

3.3.7.4 Response of Normal Process to Compile-Time Message on Sub-

solution Channel

Let the message on the virtual input channel to the normal process (that led to the

creation of the subsolution in question) be

<N1,SUNIUFS1,DB1>

Also, let the compile-time message on the subsolution channel be

<N2,S2,NI2,FS2,DB2>

and the compile-time message on the output channel from the normal process be

<N3,S3,NI3,FS3,DB3>

As before,

N3 = N2

S3 = Composition(Si, S2)

NI3 = Nh

The computation of the filter probability and duplication factor for the conjunct

associated with the normal process is somewhat involved and needs additional no-

tation. To make the notation easier to understand, a running example is used.

To begin with, let FP be the filter probability of the conjunct and DF be its

duplication factor. Let the literal associated with the normal process be G and the

rule used to reduce the goal be

G' : -SG'

where SG' is a set of conjuncts.

As our running example, consider the case where the rule is as given below.

h(a,X',Z',Q'): -tl(X',Y'),t2(Y',Z')

Therefore,

G' = h(a,X',Z',Q')

106 CHAPTER 3. COST FUNCTION

and
SG' = {tl(X',Y%t2(Y',Z')}

Also, let G, the literal associated with the normal process, be as given below.

G = h{P,X,Z,W)

Assume that the domains of all the variables have cardinality 2.

Let Ivors be the function that returns the set of variables in a literal. For

example, lvars(h(P,X,Z,W)) = {P,X,Z,W}. Also, let slvars be the function

that returns the set of variables in a set of literals. For example,

slvars({tl(X\ Y'), t2(Y\ Z')}) = {X\ Y\ Z'}

Notation related to a goal: The goal to be solved is G \Sl. VSx, the set of

variables in the goal, is given by the equation below.

VS1=lvars(G\Sl) (24)

For the running example, let 5a = {W = b}. Therefore,

VSi = lvars(G |Sl) = lvars(h{P,X,Z,b)) = {P,X,Z}

SDi, the cardinality of the domain of solutions of the goal, is given by the

equation below.

SD1= n <*("<) <25>
vievsi

For the example,

SDi = d(P) x d(X) x d(Z) = 2x2x2 = 8

Notation related to an instance of a goal: An instance of the goal G \Sl that

unifies with the head of the rule is solved. Let mgu represent the function that

computes the most general unifier. Therefore, the most general unifier US of the

goal G |Sl with the head of the rule G' is given by the equation below.

3.3. COMMUNICATION COST COMPUTATION 107

US = mgu{GuG') (26)

For the example,

US = {P = a,X' = X,Z' = Z,Q' = b}

The instance of the goal that needs to be solved, is therefore

G Is, \us

For the example, this goal instance is

h(a,X,Z,b)

VS2, the set of variables in this instance of the goal, is given by the equation

below.

VS2 = lvars(G\Sl\us) (27)

For the example,

VS2 = {X,Z}

g, the cardinality of the domain of solutions of the instance of the goal, is given
by the equation below.

9= II d(v<) (28)

For the example,

g = d(X) x d(Z) = 2x2 = 4

As before, the invocation substitution IS is the subset of the most general unifier

US that contains bindings of variables in the goal G |Sl only and not the bindings

of variables in G', the head of the rule.

For the example,

IS = {P = a}

108 CHAPTER 3. COST FUNCTION

Notation related to a conjunctive subgoal: As mentioned before, the rule in

question is

G' : -SG'

SG2, the conjunctive subgoal that needs to be solved, is given by the equation

below.

SG2 = SG'\us (29)

where US is the most general unifier of the goal and the head of the rule (as

given in equation 26).

For the example,

SG2 = {tl(X,Y'),t2(Y',Z)}

VS4, the set of extra variables that are contained in SG2, the conjunctive sub-

goal, and not in VS2, the set of variables in the instantiated goal (see equation 27),

is given by the equation below.

VS4 = slvars(SG' \us) - VS2 = slvars{SG' \us) - lvars(G \Sl \us) (30)

For the example,

VS4 = {X,Y',Z}-{X,Z} = {Y'}

h, the cardinality of the domain of these extra variables is given by the equation

below.

h= n <*(*o (3l)
vievst

For the example,

h = d(Y') = 2

3.3. COMMUNICATION COST COMPUTATION 109

Computation of filter probability and duplication factor: Let DF2 be the

compounded duplication factor of the conjuncts of the subgoal. Therefore,

DF2 = n Di (32)
DjZDF&t

where DFB2 is the duplication factor bag associated with the duplication bag

DB2 (i.e., the set of duplication factors in the duplication bag DB2). Remember

that N2 is the total number of solutions being reported. N2/NI2 gives the number

of solutions for each initial substitution because NI2 is the initial number of substi-

tutions. Dividing N2/NI2 by DF2 gives m, the number of unique solutions of the

subgoal for each initial substitution. In other words,

m = NI2 xDF2
(33)

Now, m unique solutions in the subgoal solution domain (cardinality = gxh) are

to be mapped into the instantiated goal domain (cardinality = g). For the example,

the solutions for the subgoal are distributed over the cross-product of the domains

of the variables in the set {X,Y',Z}. These are mapped into the cross-product

of the domains of variables in the set {X, Z}. The problem is to find how many

unique solutions will be obtained in the target domain. Since the distributions are

random, the probability p' of a particular member of the instantiated goal domain

not being one of the solutions is given by

Therefore, the probability p that a particular member is one of the solutions is

given by

HO CHAPTER 3. COST FUNCTION

g x h — h

p = l-p> = l-±- _£- (34)

As pointed out by Treitel [69], the analysis given above is correct, strictly speak-

ing, only when m is an integer. Since the value of m is an expected value based

on a probabilistic analysis, it may not be an integer. Stirling's approximation for

binomial coefficients can be used to solve this problem.

There is another problem that arises because the analysis above assumes that

the value of m is known exactly as opposed to being an expected value. Since p

is not a linear function of m, the expected value of p cannot be obtained simply

by using the expected value of m in equation 34. This problem is ignored in this

thesis.

Since the probability of a particular member of the instantiated goal domain

being a solution is p and the size of the domain is g, the expected number of unique

solutions in the domain is p x g. Moreover, since the total number of solutions is

m, the additional duplication factor due to this mapping (DFa) is given by

DFa =
P*9

The duplication factor for this solution to the goal, DF, is given by multiplying

DF2, the duplication factor for the subgoal solution (as given in equation 32), and

this additional factor.

DF = DF2 x DFa

The filter probability for this solution to the conjunct is obtained by dividing

the number of unique solutions obtained (= $£) for each goal (= $£ -^ JVi) by the

cardinality of the domain of possible solutions for the goal (= 5£>i). Therefore,

FP =
Nt x SDi x DF

3.3. COMMUNICATION COST COMPUTATION 111

Algorithm Complexity

Communication
Estimation

Up to exponential factor
less than run-time
computation

Communication
Cost
Computation

0(p2)

Communication
Cost
Recomputation

0(p)

p = Number of partitions

Table 2: Complexity Results for Communication Cost Computation

Now, DF and FP can be worked into the output message in the 2-tuple format.

Let the position of the conjunct associated with the normal process be k. Therefore,

FS3 = FS2U{<k,FP>}

DB3 = DB2® l<k,DF> 1

3.3.8 Complexity

Complexity results are summarized in table 2. More explanation including the basis

for the results is given in the following sections (3.3.8.1 and 3.3.8.2).

3.3.8.1 Communication Estimation Algorithm

Using unknown constants in the abstract backward-chaining deduction ensures that

the number of logical inferences in the abstract deduction is either equal to or less

112 CHAPTER 3. COST FUNCTION

than the number of inferences when no unknown constants are used. In the worst

case, no reduction takes place in the number of logical inferences. In the best case,

the number of logical inferences can be reduced by an exponential factor (as was

seen earlier in section 3.2.

3.3.8.2 Communication Cost Computation Algorithm

If there are p partitions, complexity for this computation is 0(p2) because all pairs

of partitions may communicate with each other in the worst case. In case there are

multiple copies, additional communication needs to be accounted for as described

in section 3.1.4. However, this only takes a constant number of operations for each

pair of partitions and therefore the complexity remains 0(p2).

If the communication cost needs to be recomputed after a single partition is

reallocated to another processor, the cost of the recomputation is 0{p) because the

partition in question may communicate with all other partitions in the worst case.

Again, the presence of multiple copies makes no difference to the complexity.

3.4 Processor Multiplexing Cost Computation

The computation of processor multiplexing cost (defined in section 3.1.5) is done by

two algorithms. The first algorithm is called the Processing Interval Assignment

algorithm. This algorithm performs an abstract simulation of PM, similar to the

one for estimating communication. A side-effect of the simulation is the assignment

of processing intervals for the operations that need to be performed. A processing

interval is a 3-tuple of a start time, a finish time and a processor load. The second

algorithm is called the Processor Multiplexing Cost Computation algorithm. This

algorithm takes the output of the Processing Interval Assignment algorithm and an

allocation and computes the processor multiplexing cost.

3.4. PROCESSOR MULTIPLEXING COST COMPUTATION 113

3.4.1 Cost Model

To estimate any cost, one needs a cost model. A cost model specifies the cost

incurred for some set of basic operations. A useful cost model is one that picks

these basic operations such that all operations that have any associated cost must

be decomposable into these basic operations. This subsection presents a useful cost

model for PM.

The basic operations chosen with their associated cost are:

• Selecting the next task to work on: We assume that any task that is ready to

be executed may be picked. Cost assigned is 0.

• Selecting rules/assertions to unify with goal: This is essentially a database

indexing operation. Cost is assumed to be a constant Kj.

• Plugging a substitution into a literal: Cost is Kp.

• Doing a successful unification: Cost is K\j.

• Doing an unsuccessful unification: Cost is Kpu-

• Doing a successful application of the Merge function: Cost assigned is 0.

• Doing an unsuccessful application of the Merge function: Cost assigned is 0.

Note that the constants used above are dependent on the multiprocessor used.

These constants have units of time such as seconds, for example.

3.4.2 Processing Interval Assignment Algorithm

This algorithm is split into four parts just as the Communication Estimation algo-

rithm was. In that algorithm, the response of processes to messages on different

channels was described in terms of their communication requirements. We now do

the same in the present algorithm in terms of processing requirements.

114 CHAPTER 3. COST FUNCTION

A compile-time message is augmented to include two other pieces of information:

(1) A start time, ST, and (2) a finish time, FT. In its entirety, a compile-time

message looks like:

<N,S,FS,DB,ST,FT>

Fields other than ST and FT have been defined before in section 3.3. It is assumed

that the JV actual messages that this represents are distributed uniformly in time

from ST to FT. For the top-level goal, ST and FT are both 0. This is interpreted

to mean that the top-level goal is given at time 0.

The basis for the probabilistic analysis here is the same as that for the Com-

munication Estimation algorithm. All the detail that follows now for the four parts

of the Processing Interval Assignment Algorithm can be safely skipped on the first

reading without loss of continuity. Interested readers can return later for the addi-

tional detail.

3.4.2.1 Response of Normal Process to Compile-time Messages on Vir-

tual Input Channel

Let the compile-time message on the virtual input channel be

< Ntn, Sin, NIin, FSin, DBin, STin, FTin >

There are two cases that need to be considered. In the first case, there are n

rules that may be used to reduce a goal. In the second case, NF facts may be used

to solve the goal. These cases are treated separately. If there are both rules and

facts to reduce/solve the goal, then it is easy to see how a combination of the two

procedures may be used.

Case I: Rules only If there are n rules that may be applied to the goal, then

n subtask channels will be set up and one message will be sent on each. We will

assume that unifications with the rules are done in order from 1 to n. Assume also

that the probability of unification of the goal with the fc'th rule is PUk. Let the

compile-time message on the fc'th subtask channel be

< Novtu, Sout,,, NI<Mtk, FSout,,, DBaut*, STwtu, FTmtk >

3.4. PROCESSOR MULTIPLEXING COST COMPUTATION 115

Remember that the amounts of time taken for plugging in a substitution into a

literal, for indexing the rules/assertions to unify with a goal, for a successful unifi-

cation, and for an unsuccessful unification, are Kp, Ki, Kxj and KFU respectively.

For each actual message to a normal process, the substitution in the message is

applied to the literal associated with the process, all relevant rules/assertions are

indexed, and unifications are attempted between the goal and the rules/assertions.

Assume that there are n rules and unifications are attempted in order starting with

the rule numbered 1 and ending with the rule numbered n. Therefore, A&, the time

taken from the input of an actual message at a process to the possible output of a

message on the k'th subtask channel (corresponding to the k'th rule) is given by:

Ak = KP + Ki + J2[PUi xKu + (l- PUi) x KFU] (35)

Therefore, STouth and FToutk are given by:

5Toutk = 5rin + Afc (36)

FT^^FTin + Ak (37)

We will now characterize the processing interval, < STj,FTi,PLi >, associated

with the processor for this computation. The start time, STi, of the processing

interval is given by:

STt = STin (38)

The finish time, FTi, of the processing interval is given by:

FTj = FT«*. (39)

Let PT be the the total amount of processing in time units for this computation.

PT = Nin x An (40)

Therefore, the processor load PLj, or the average number of virtual processors

busy in the processing interval, is given by:

116 CHAPTER 3. COST FUNCTION

Plugging in the value of PT from equation 40 into equation 41, we get:

M'=££w, (42)

Of course, all other fields of the output compile-time messages can be computed

using the Communication Estimation algorithm.

Case II: Facts only In this case, NF facts are available for attempting to solve

the goal. The compile-time message on the virtual input channel is

< Nin,Sin,NIin,FSin,DBin,STin,FTin >

as before. In this case, only one subtask channel is set up since the whole set of

NF facts is considered in one pass (because they are included in one fact pattern).

Let the compile-time message on the subtask-channel be

< No„t > Sout, NIout j FSout» DBout j STout, .r Tout >

As before, Afc, the time taken from the input of an actual message at a process

to the (possible) output of a message on the subtask channel is given by:

k

Ak = KP + Ki + Y,[PU xKu + (l- PU) x KFU] (43)
«=i

Since only one subtask channel is set up, ST^ in this case is the minimum

of the STouti's in the previous case (with rules only) and FT^t in this case is the

maximum of the FT^i in the previous case. Therefore,

ST^ = STin + Ax (44)

FT^ = FTin + ANF (45)

We will now characterize the processing interval, < ST^FT^PLi >, associated

with the processor for this computation. The start time, STr, of the processing

interval is given by:
STi = STin (46)

3.4. PROCESSOR MULTIPLEXING COST COMPUTATION 117

The finish time, FTj, of the processing interval is given by:

FTi = FT^t (47)

Therefore, the processor load PLi, or the average number of virtual processors

busy in the processing interval, is given by:

PL, = ^xA"f (48) 1 FTi-STi v '

3.4.2.2 Response of Tail Process to Compile-time Messages on Virtual

Input Channel

Since no basic operations are included in this computation, no cost is incurred. A

message on the virtual input channel produces a message on the solution channel

immediately with no time delay.

3.4.2.3 Response of Normal Process to Compile-time Messages on Sub-

solution Channels

Again, no basic operations are included and, therefore, the computation is free.

3.4.2.4 Analog of the CP function

Sim-Merge, the function described in the Communication Estimation algorithm,

must be augmented further. The additional computation to be performed by Sim-

Merge is described below.

Let there be n input channels and the messages on the channels be

< Ni, Sh NI, FS{,DBi, STi,FT{ >

In case, the messages contain inconsistent substitutions, then the output is _L

as before. If the output is not _L, it is a message

< N0,S0,NI,FS0,DB0,ST0,FT0 >

In this computation, no basic operations are included. However, one still has to

assign a start time, ST0, and a finish time, FT0, to the output message. ST0 is the

118 CHAPTER 3. COST FUNCTION

earliest possible time that an actual message associated with the output compile-

time message is sent out. Notice that there must be at least one actual message

on each of the input channels to produce an actual message on the virtual input

channel. Therefore,

ST0 = maxSTi (49)

Similarly, FT0 is the latest possible time that an actual message associated with

the output compile-time message is sent out. Therefore,

FT0 = xnaxFTi (50)

A uniformity assumption has been made here that all actual messages associated

with the output compile-time message are uniformly distributed over this interval

from ST0 to FT0.

3.4.3 Processor Multiplexing Cost Computation Algorithm

The algorithm will be referred to by its abbreviated name PMCCA. The input is

a set of sets of processing intervals—one set for each processor that will be used at

run-time. The output is a number that represents the processor multiplexing cost

for the multiprocessor.

For this algorithm, processing intervals are represented in a different manner

than before. Each processing interval is represented as two elements, one for each

end-point of the interval. Some additional information is also included in each

element. In all, an element is a 5-tuple with the following fields:

1. Type: This is either start or finish depending on whether this element repre-

sents the start end-point or finish end-point for the interval in question.

2. Time: This is the time associated with the start or finish end-point of the

interval in question.

3. Load: This is the processor load associated with the processing interval.

3.4. PROCESSOR MULTIPLEXING COST COMPUTATION 119

4. CLoad: This is the cumulative load of all intervals that overlap at this instant

in time.

This algorithm uses an auxiliary procedure PMCCA-1 that takes the set of

processing intervals associated with a single processor and returns the processor

multiplexing cost for that processor only.3 After this auxiliary procedure is run on

each processor, the sum of all the individual processor multiplexing costs gives the

processor multiplexing cost for the multiprocessor.

The procedure PMCCA-1 uses an abstract data structure that we will call a PQ-

list. The name suggests the similarity of the data structure to both priority-queues

[3] and sorted lists. The elements are maintained in a 2-3 tree [3], for example,

to get log performance for insertions and deletions. They are also maintained in a

sorted list (in increasing order). This is easy because 2-3 trees have leaves in sorted

order anyway from left to right. In all, the data structure supports the following

abstract operations:

1. InsertPQL(PQL, element, key): This inserts the element element into the

PQ-list PQL in log time. In addition, the CLoad field of the element is set

to the CLoad field of the previous element (in sorted order). If there is no

previous element, then the field is set to zero.

2. DeleiePQL(PQL, element): This deletes element from PQL in log time.

3. EnumeratePQL(PQL, elementl, elements): Enumerates all elements in PQL

in sorted order from the element elementl to the element elements. This is

done in time linear in the number of elements enumerated.

A detailed description of the procedure PMCCA-1 is given in appendix B. How-

ever, a rough description will be given here. Each processor has an associated PQ-

list and a variable PMC. PMC is the current value of the processor multiplexing cost

for the current set of processing intervals in the PQ-list. PMC is zero initially when

there are no elements in the PQ-list. Each processing interval is inserted into the
3Notice that processor multiplexing cost is defined for a multiprocessor but a single processor is

just a special case of a multiprocessor.

120 CHAPTER 3. COST FUNCTION

PQ-list as two elements using a procedure called InsertPI (for Insert Processing In-

terval). When elements are inserted into the PQ-list, the data-structure itself must

be modified as necessary (by using the abstract operation InsertPQL for PQ-lists).

In addition, the CLoad fields of all elements whose Time fields fall within the time

interval of the processing interval may have to be modified. After all processing

intervals have been inserted into the PQ-list, the value of PMC is the processor

multiplexing cost for the processor.

Another procedure called DeletePI is used to remove processing intervals from

the PQ-list. DeletePI is not used if the processor multiplexing cost is to be computed

once only for a particular allocation. However, it is useful when more than one

allocation needs to be considered. The next chapter will demonstrate this need.

Both InsertPI and DeletePI do a constant number of operations at most for every

element in the PQ-list that lies between the two end-points (in sorted order). This

can be verified by looking at the detailed description in appendix B. In the worst

case, this set of elements could include every element in the PQ-list. In addition,

the associated InsertPQL and DeletePQL operations take log time (in the number

of elements in the PQ-list). Therefore, the total time complexity of both InsertPI

and DeletePI is 0{n), where n is the number of elements in the PQ-list.

3.4.4 Complexity

The complexity results for the processor interval assignment algorithm and the

processor multiplexing cost computation algorithm are summarized in table 3. More

explanation including the basis for the results is given in the foUowing sections

(3.4.4.1 and 3.4.4.2).

3.4.4.1 Processor Interval Assignment Algorithm

Just as in the case of the communication estimation algorithm, an abstract backward-

chaining deduction is done using unknown constants as the abstraction. Also, the

number of additional operations for each logical inference is constant. Therefore, the

complexity of this algorithm is the same as that for the communication estimation

3.4. PROCESSOR MULTIPLEXING COST COMPUTATION 121

Algorithm Complexity

Processor
Interval
Assignment

Up to exponential factor
less than run-time
computation

Processor
Multiplexing
Cost
Computation

0(q r2)

Processor
Multiplexing
Cost
Recomputation

0(q r2)

q = Number of processors

r = Number of subgoals at compile-time

Table 3: Complexity Results for Processor Multiplexing Cost Computation

122 CHAPTER 3. COST FUNCTION

algorithm.

In fact, both the communication estimation algorithm and the processor inter-

val assignment algorithm can be performed concurrently using just one abstract

backward-chaining deduction. This is, in fact, how they are implemented. Al-

though, this cost savings is important for an implementation, complexity results

remain the same whether the two algorithms are performed concurrently or sepa-

rately.

3.4.4.2 Processor Multiplexing Cost Computation Algorithm

Assume at first that no multiple copies are allowed for partitions. Let r be the

number of subgoals generated during the abstract backward-chaining deduction of

the Processor Interval Assignment Algorithm. Each subgoal will have an associated

processing interval. In the worst case, all subgoals may be allocated to the same pro-

cessor and, therefore, the same PQ-list. As mentioned before, InsertPIand DeletePI

take 0(n) time, where n is the number of elements in the PQ-list. Therefore, the

time taken for the combined set of InsertPh to compute the processor multiplexing

cost initially is 0(r2).

Now, consider the case with multiple copies. Let q be the number of processors

in the system. Now, the maximum number of copies possible for any partition is

q. If the number of copies of a certain partition is m, then each of its processing

intervals in the single copy case is now modelled as m processing intervals, each

with i of the original processor load. The time taken for this algorithm is the most

when all r processing intervals have q copies associated, one in each processor. The

combined set of InsertPh will take 0(qr2) time. Note that it is not 0(q2r2) because

any single processor can only contain one copy of a partition.

Now, let us say that reallocations are allowed and a single partition may be

reallocated to another processor. Processor multiplexing cost may be computed

by using DeletePIs on the associated processing intervals to remove them from

the original processor's PQ-list and then applying InsertPh to insert the same

processing intervals into the new processor's PQ-list. Since the partition in question

3.5. SUMMARY 123

may include all the subgoals in the worst case, the cost of recomputation is 0(qr2)—

the same as the worst case cost for the original computation. In the typical case,

however, one would hope to do a lot better than this.

3.5 Summary

This chapter has presented the formal definition for the cost function that is the

basis for allocation. The cost function relates well to intuitive notions of the quality

of allocations. One way to view the cost function is that it treats all communication

delays and delays due to sequentialization of parallel tasks as being on the critical

path of the computation in the worst case. Since the parallel time for execution

is the same for all allocations, it is the extra delay due to communication and

sequentialization that should be used (and is used) as the cost function to compare

different allocations.

An important feature of the cost function is that it is efficient to compute and

recompute. Algorithms were presented to do this computation and recomputation.

The cost function ignores two aspects of allocations that should be included in

a future allocator, if possible. First, as mentioned above, all delays and sequen-

tializations of parallel tasks are considered to be on the critical path. It would be

better to work without this assumption. Second, the communication delay function

does not take congestion of communication channels into account. Despite these

two simplifications, the cost function serves as a good basis for an allocator as the

next chapter will show.

124 CHAPTER 3. COST FUNCTION

Chapter 4

Allocation Algorithms

This chapter describes the algorithms used by the allocator to perform a limited

search of the space of allocations. In addition, the chapter includes experimental

results obtained from an implementation of the allocator and PM.

There are two main algorithms for searching the space of allocations. Both

use the cost function and associated algorithms described in the previous chapter.

The first algorithm is a greedy algorithm in which partitions are allocated one at

a time. A partition is allocated to the lowest cost processor without re-allocating

any partitions that were allocated previously. The second algorithm is a local

minimization algorithm. This algorithm consists of a sequence of cost-reducing

re-allocations of partitions to neighboring processors.

Both allocation algorithms are described in detail next followed by experimental

results. Some related work is also discussed at the end of the chapter.

4.1 Greedy Allocation

This section contains the specifications of the algorithm, a description of the al-

gorithm, a discussion of its complexity, and an example to show that it does not

necessarily produce a locally optimal solution. However, the section on experimen-

tal results will show later that, in a typical case, greedy allocation can produce good

125

126

allocations by itself.

CHAPTER 4. ALLOCATION ALGORITHMS

4.1.1 Specifications

Inputs

1. P: a set of partitions of the database.

2. C: a function that takes two partitions Px and P2 and returns a tuple of

the form < data,number > where data is the amount of data (in bytes) and

number is the number of messages sent from partition Px to partition P2. data

and number are expected values in a probabilistic sense.

3. PI: a function that takes a partition and returns the set of processing intervals

associated with the partition.

4. Multiprocessor constants: These are Ku *i, and K3 used to compute com-

munication cost as given by equations 5 and 6.

5. Topology: This includes (1) distances between all pairs of processors and (2)

lists of neighbors of each processor.

Outputs

1. Allocation: A many-to-one mapping from the set of partitions to the set of

processors.

2. Number of copies for each partition: If the number of copies is greater than

1, then the allocation above specifies the central processor for the cluster of

copies. The number of copies will determine the processors around the central

processor that will also contain copies of the partition.

4.1.2 Algorithm

Let us assume for now that each partition has a single copy. The extensions to

handle multiple copies will be described later in this section.

4.1. GREEDY ALLOCATION 127

The overall structure of the greedy allocation algorithm is as follows: Starting

from an empty allocation, each partition is allocated one at a time. The single

partition under consideration at any time is allocated to the processor that leads

to the lowest cost. After a partition is allocated, it is not reallocated to another

processor.

This algorithm is embodied in the procedure Greedy Allocation shown in figure

32. As shown in the figure, all inputs to the procedure are implicit. These inputs

were described in the specifications to the algorithm given above. At the beginning

of each iteration of the outer For loop, there is a partial allocation of some partitions

to processors. Each iteration allocates the next partition to the processor that leads

to the lowest cost. The inner For loop considers allocation of the partition to each

processor in turn. The code segment "Allocate Partition to Processor1'' includes (1)

the application of the procedure InsertPIirom chapter 3 to each processing interval

associated with the partition Partition—with the second argument of the call to

InsertPIbemg the PQ-list associated with the processor Processor, (2) the update of

the cost function due to the additional communication to/from the partition from/to

those already allocated, and (3) the update of the state of allocation reflecting that

the partition has been allocated to the processor. The code segment "Deallocate

Partition from Processor" includes the opposite operations.

Multiple copies can be handled in a couple of ways. One method is more prin-

cipled as well as more costly than the other one. I will describe this first. The only

change required from the procedure Greedy Allocation is that the inner For loop

needs to be changed as follows.

"For all Processor 6 PotentialProcs do begin"

needs to be changed to

"For all combinations of Processor € PotentialProcs and

NumCopies=l... Cardinality(AllProcs) do begin"

and

"Allocate Partition to Processor"

needs to be changed to

128 CHAPTER 4. ALLOCATION ALGORITHMS

Procedure GreedyAllocation()
begin

PotentialProcs <- AllProca;
I* AllProcs is the set of all processors */
For all Partition € SetOf Partitions do begin
/* SetOfPaxtitions is the set of all partitions */

BestCost <— oo;
BestProc *— nil;
For all Processor 6 Potential Procs do begin

Allocate Partition to Processor;
TempCost «— Cost(Allocation);
If Tempcost < BestCost then begin

BestCost <- TempCost;
BestProc «— Processor

end; /* If */
Deallocate Partition from Processor

end; /* For */
Allocate Partition to BestProc

end /* For */
end; /* GreedyAllocation */

Figure 32: Procedure GreedyAllocation

4.1. GREEDY ALLOCATION 129

"Allocate NumCopies copies of Partition to Processor."

This last statement is interpreted to mean that the central processor of the

cluster of the NumCopies copies should be Processor. Call this modified version of

the procedure GreedyAUocation'.

Another way to handle multiple copies is to decide the numbers of copies of

all partitions prior to using the procedure Greedy Allocation. The numbers can

be picked heuristically. One reasonable way to pick the number of copies of a

partition is to take the highest degree of parallelism exhibited by the partition.

The highest degree of parallelism is simply the maximum of the processor-load

function associated with the partition as described in chapter 3. Since the number

of copies cannot be any arbitrary number, and certainly not a fractional number,

the number of copies is picked arbitrarily to be the next higher acceptable number

greater than the maximum degree of parallelism. Call this modified version of

the procedure Greedy Allocation". This method is less expensive than the first one.

Actual complexities of the two methods will be compared in the next section.

Notice that in the code for the procedure Greedy AUo cation shown in figure 32,

no mention was made of the order in which partitions are chosen for allocation

out of the set SetOfPartitions. In practice, the order of allocation can affect the

allocation chosen by the procedure. The order that is used in this thesis is the

topological order associated with the dataflow* graph of the computation. If a

partition occurs multiple times in a topological search, its first instance is chosen

for the ordering. This order of allocation ensures that partitions are allocated only

after previously used partitions in the dataflow* graph have been allocated, thereby

giving the greedy allocation procedure some context in which to make reasonable

decisions. Prior to using the topological ordering, a random ordering was used and

discarded because it would make bad allocations for partitions that did not have

any communicating partitions allocated before it.

In the special case when communication delays are assumed to be zero, there is

an even more effective order of allocation. In particular, Graham [29] has shown that

a particular order gives an upper bound on completion time of twice the optimal

130 CHAPTER 4. ALLOCATION ALGORITHMS

Algorithm Complexity

Greedy Allocation
2 2

0(p q+pqr)

Greedy Allocation'
2 2 3 2x

0(p q +pq r)

Greedy Allocation"
2 2 2V

0(p q+pq r)

p = Number of partitions

q = Number of processors

r = Number of subgoals at compile-time

Table 4: Complexity Results for Greedy Allocation

completion time (asymptotically when the number of processors goes to infinity).

In this ordering, the next task chosen for execution at any time out of a DAG of

tasks is always the one that "heads the longest chain of unexecuted tasks (in the

sense that the sum of the task times in the chain is maximal)." Unfortunately, this

result does not apply to the case where communication delays are non-zero.

4.1.3 Complexity

The complexity results for greedy allocation are summarized in table 4. Further

explanation including the basis of the results is given below.

Let p be the number of partitions, q the number of processors, and r the num-

ber of subgoals in the dataflow* graph generated during abstract backward-chaining

4.1. GREEDY ALLOCATION 131

deduction for the Processing Interval Assignment algorithm as well as the Commu-

nication Estimation algorithm.

The time to update the communication cost function when a single partition is

allocated to a single processor is p (see section 3.3.8). The time to update processor

multiplexing cost when a single partition is allocated is r2 when only single copies

are allowed and it is qr2 when multiple copies are allowed (see section 3.4.4.2). The

combined cost is 0(p + r2) for single copies and 0(p + qr2) for multiple copies.

Deallocation leads to the same cost and, therefore, the order of complexity for a

combined allocation and deallocation is the same as simply an allocation.

The outer loop is executed p times—once for each partition. For Greedy Al-

location as well as Greedy Allocation", the inner loop is executed q times. For

GreedyAllocation', the inner loop is executed q2 times since the cardinality of Po-

tentialProcs in the worst case (3) multiplied by the cardinality of AllProcs (q) is

q2. Therefore, GreedyAllocation and GreedyAllocation" require pq updates due to

allocations and GreedyAllocation1 requires up to pq2 updates due to allocations.

Multiplying the number of updates by the complexity of each update gives the

complexity of the entire algorithm. Therefore, the complexity of GreedyAlloca-

tion is 0(pq x (p + r2)), which is 0(p2q + pqr2). Similarly, the complexity of

GreedyAllocation" is 0(pq x (p + qr2)), which is 0(p2q + pq2r2). Finally, the com-

plexity of GreedyAllocation' is 0(pq2 x (p + qr2)), which is 0(p2q2 +pq3r2).

An optimization is possible for the greedy allocation procedures that can reduce

the absolute cost of the procedures but does not affect the worst case complexity

measures derived above. PotentialProcs in the procedures need not be AllProcs.

In the single copy case, for example, allocations need to be considered only to

processors that already have partitions allocated to them or their neighbors. As

a special case, the first partition should be allocated immediately to the processor

where the computation will begin (which is assumed to be the same as the processor

where the final result will be demanded). When partitions can have multiple copies,

this gets a bit more involved but the general idea is the same. Notice that this

optimization does not reduce the size of PotentialProcs in the worst case, which is

132 CHAPTER 4. ALLOCATION ALGORITHMS

4.1.4 Not Locally Optimal

Once allocated to a processor, a partition is not re-allocated to another processor

when allocations of other partitions are being considered. This is done regardless of

any new communication requirements that the later partitions may expose. There-

fore, it is not surprising that greedy allocation is not guaranteed to produce a locally

optimal allocation. An example of greedy allocation that does not produce a locally

optimal solution is given in appendix C. Of course, if the solution is not locally

optimal, it is also not globally optimal.

4.2 Local Minimization

This section contains a specification of the algorithm, a description of the algorithm,

a discussion of its complexity, and an example to show that the allocations produced

are not necessarily globally optimal.

4.2.1 Specifications

Inputs

1. P: a set of partitions of the database.

2. C: a function that takes two partitions Pi and P2 and returns a tuple of

the form < data,number > where data is the amount of data (in bytes) and

number is the number of messages sent from partition Pi to partition P2. data

and number are expected values in a probabilistic sense.

3. PI: a function that takes a partition and returns the set of processing intervals

associated with the partition.

4. Multiprocessor constants: These are Üfi, K2, and K3 used to compute com-

munication cost as given by equations 5 and 6.

4.2. LOCAL MINIMIZATION 133

5. Topology: This includes (1) distances between all pairs of processors and (2)

lists of neighbors of each processor.

6. An allocation: A many-to-one mapping from the set of partitions to the set

of processors.

7. Number of copies for each partition

Outputs

1. Allocation: A many-to-one mapping from the set of partitions to the set of

processors.

4.2.2 Algorithm

Notice from the specifications given above that the number of copies for each par-

tition is already fixed by the greedy allocation procedure. In fact, the number of

copies is an input to the procedure.

The code for the local minimization procedure LocalMinimization is given in

figure 33. The idea is that there is a set of iterations specified by the outer While

loop. In each iteration, every partition is considered in turn (by the outer one of

the two nested For loops. The best allocation is picked for each partition among

the processor it is currently currently allocated to and its neighbors—six in the case

of FAIM-1. This is done in the inner For loop. At the conclusion of the inner For

loop, the partition is allocated to the best processor among the ones considered.

If this is different from the processor that the partition was allocated to, then the

boolean variable Changed? is set to true. Therefore, Changed? gets set to true

if one or more partitions get reallocated to a neighboring processor. The While

loop terminates when Changed? is false, or equivalently when no partitions were

reallocated in the previous iteration of the While loop.

134 CHAPTER 4. ALLOCATION ALGORITHMS

Procedure LocalMinimization()
begin

Changed? <— true;
While Changed? = true do begin

Changed? *— nil;
For all Partition £ SetOf Partitions do begin

CurrProc <— Processor {Partition);
BestCost <— Cost;
BestProc <— CurrProc;
Deallocate Partition from CurrProc;
For all Processor € Neighbor(CurrProc) do begin

Allocate Partition to Processor;
TempCost *— Cost(Allocation);
If TempCost < BestCost then begin

BestCost <— TempCost;
BestProc <— Processor

end; /* If */
Deallocate Partition from Processor

end; /* For */
If BestProc ^ CurrProc then begin

Allocate Partition to BestProc;
Changed? «— true

end /* If */
end /* For */

end /* While */
end; /* LocalMinimization */

Figure 33: Procedure LocalMinimization

4.2. LOCAL MINIMIZATION 135

Algorithm

Complexity

Single
Copies

Multiple
Copies

LocalMinimization P 2 2
0(qK(p +pO)

P 2 2
0(q (p +pqr))

One iteration of
While loop in
LocalMinimization

2 2
0(p +pr)

2 2
0(p +pqr)

p = Number of partitions

q = Number of processors

r = Number of subgoals at compile-time

Table 5: Complexity Results for Local Minimization

4.2.3 Complexity

Table 5 summarizes the complexity results for Local Minimization. Further expla-

nation including the basis for the results is given below.

In the worst case, LocalMinimization may consider all possible allocations. These

are exponential in number. To be precise, there are qp allocations, where p is the

number of partitions and q is.the number of processors. Notice that after each

iteration of the While loop, there is always a complete allocation that is the lowest

cost allocation found so far. As it turns out, each iteration takes polynomial time

(see below). Therefore, if the algorithm has exceeded some time limit, it can be

terminated between iterations of the While loop and the latest allocation can be

used.

The time taken for each iteration of the While loop can be analyzed as follows.

136 CHAPTER 4. ALLOCATION ALGORITHMS

Each partition is allocated (and deallocated) 7 times in each iteration of the While

loop. The cost for updating the cost function for each allocation/deallocation is

0(p + r2) when single copies of partitions are used and it is 0(p + qr2) when

multiple copies of partitions are allowed (see previous discussion on complexity

of Greedy Allocation). Since there are p partitions, the total times taken for an

iteration are 0(p2 + pr2) and 0(p2 + pqr2) for the single copy and multiple copy

cases respectively.

4.2.4 Not Globally Optimal

Even if the procedure LocalMinimization is executed till it terminates (as opposed to

just a few rounds), there is no guarantee that the locally optimal allocation is going

to be globally optimal as well. Appendix D contains an example of an allocation

produced by LocalMinimization that is not globally optimal.

4.3 Experimental Results

PM, the parallel execution model, and the resource allocation algorithms have been

implemented in Zetalisp on the Symbolics 3600 series of Lisp Machines [44].l PM

and the simulated version of PM were implemented on top of a high-level functional

simulation of FAIM-1 using the event-driven simulator Helios [24]. The parallel

interpreters were created by modifying the sequential backward-chaining interpreter

in MRS [54], a logic programming system.
Several examples have been tried using this implementation. One of these will

be described in detail to demonstrate the utility of PM and the resource alloca-

tion techniques developed in this thesis. The example logic program describes the

structure and behavior of a digital device—a 4-bit adder. In addition, a set of facts

describes the values of all the inputs. The goal given to the backward-chaining

deduction engine is to determine the value of a particular output. This problem

is similar, but not identical, to a part of the problem of test-generation [59]: the

Zetalisp and Symbolics are trademarks of Symbolics, Inc.

4.3. EXPERIMENTAL RESULTS 137

determination of values for a set of inputs that would force an output (or some

other intermediate port) to a particular value.

Detailed information about the example is given in appendix E. In particular,

the appendix contains the complete database for the example, the goal given to

the backward-chaining engine, the partitioning of the database, the FAIM-1 mul-

tiprocessor configuration used, other multiprocessor parameters, and finally the

allocations generated by the allocator. Two allocations are shown: the first for the

single copy case and the second for the multiple copy case.

Figure 34 shows the parallelism profile for the application. The profile gives

the number of parallel inferences versus time assuming unbounded processors and

memory, and instantaneous communication. The figure shows two curves: the

curve marked "AOP" shows the profile when and-parallelism, or-parallelism, and

pipelining are exploited and the curve marked "OP" shows the profile when only

or-parallelism and pipelining are exploited. The average and maximum parallelism

for the "AOP" case are 30.371 and 106 respectively. The same numbers for the

"OP" case are 12.745 and 37 respectively. The numbers demonstrate the advantage

of exploiting and-parallelism.

The same curves also give unreachable lower bounds on the time to complete the

computation. The lower bound is simply the maximum time value for the curve.

In any real multiprocessor, the completion time will be greater than this lower

bound because it will have only a limited number of processors (as opposed to an

unlimited number assumed here) and non-zero communication delays (as opposed

to instantaneous communication assumed here). The lower bound for the "AOP"

case is 35 logical inference time units and the lower bound for the "OP" case is

51 logical inference time units. Again, these numbers indicate the advantage of

exploiting and-parallelism.

The curves also give the sequential time for computation. The sequential time

is simply the area under the curve. The sequential time for the "AOP" case is

1063 logical inference time units and the sequential time for the "OP" case is 650

logical inference time units. Notice that the sequential time for the "OP" case is

lower than the sequential time for the "AOP" case. Therefore, if only one processor

138 CHAPTER 4. ALLOCATION ALGORITHMS

2 '10
2,105

S 100
u
o 95
°- 90

85

80

75
70
65
60
55 ■

50
45
40
35
30
25
20

15
10

5 ■ ^_r-l . ■■'

X

J^

OP
AOP

Ln

J

5 10 15 20 25 30 35 40 45 50 55
Time (Logical Inferences)

Figure 34: Parallelism Profile for Adder Example

4.3. EXPERIMENTAL RESULTS 139

is available, it is more efficient to exploit less parallelism conceptually. Of course,

it could have been the other way around also as pointed out in chapter 2. The

corresponding unreachable upper bounds on speedups for "AOP" and "OP" can

be computed by dividing the sequential time by the unreachable lower bound on

time taken in the parallel case. These upper bounds are 1063/35 (= 30.371) and

650/51 (= 12.745) "AOP" and "OP" respectively. Notice that these unreachable

speedup numbers are the same as the average parallelism numbers given earlier (as

they should be).

Earlier experiments with smaller examples had indicated that greedy allocation

by itself either produced locally optimal allocations or allocations that were very

close to locally optimal. The experiments described for the adder example use

greedy allocation only; no local minimization was used.

A possible explanation for greedy allocation turning out to be so successful

is given now. The only hand-designed situations where greedy allocation per-

forms poorly are cases where the communication and processing requirements for a

dataflow* graph are highly non-uniform (see appendix C for an example). In the

practical examples looked at, this was not the case (i.e., processing and commu-

nication requirements were fairly uniform). In particular, for the adder example

being considered here, all communication arcs in a conjunct graph carry a single

message, if they carry one at all. This follows directly from the fact that the output

of a hardware component is a function of the inputs. In addition, the amount of

processing associated with nodes in a conjunct graph is fairly uniform. The number

of rules that apply to reducing any particular goal ranges from two to four only.

When GreedyAllocation was used to make a single copy allocation, the time

taken and speedup were found to be 215.531 logical inference time units and 4.932

respectively.

While using the single-copy allocation generated by the allocator program, it was

noticed that certain partitions were bottlenecks in the computation. The first clue

came from monitoring the "busy-ness" of various processors during the parallel

computation.2 The second clue came from looking at the parallelism profile of

2This weis done by using a color instrumentation tool in Helios, the event-driven simulator. A

140 CHAPTER 4. ALLOCATION ALGORITHMS

single partitions. Some partitions came out with very high parallelism for some

time intervals indicating that they might be bottlenecks.

Given the evidence of a bottleneck due to single copies, it was decided to allow

multiple copies in the allocation. The procedure GreedyAllocation" was used alone

without any local minimization. If local minimization were used, it would only

improve on this allocation. It turns out that the time taken and speedup for the

allocation generated were 60.254 logical inference time units and 17.642 respectively.

Compared to the single copy case, the speedup is a multiple of 3.577 higher.

A random allocator was used to generate an allocation using the same number

of copies for each partition as that used by GreedyAllocation". Time taken and

speedup were 215.531 logical inference time units and 17.015 respectively.

GreedyAllocation" is not much better than a random allocator in this case be-

cause communication is relatively cheap in the FAIM-1 multiprocessor configuration

considered. However, there are at least two cases where a random allocation can

perform arbitrarily worse than a greedy allocation. Both of these two cases have

the characteristic that the average delays in the random allocation case are arbi-

trarily larger than the average delays expected in the greedy allocation case. The

first case is one in which there axe a larger number of processors. A larger number

of processors increases the average distance between a random pair of processors.

This increases the expected distance for communication using a random allocation.

However, greedy allocation does not use more processors unless that decreases the

cost function. In other words, adding more processors does not necessarily mean

that they will be used by greedy allocation. The second case is one in which dif-

ferent communication hardware is used and communication is higher even for the

same distances as before. This could happen if a different multiprocessor were used

that did not have a high degree of hardware support for communication (as it is for

FAIM-1).
Now, it remains to be seen what the effect of higher delays is on random allo-

cations. Figure 35 illustrates this effect. The figure plots speedup versus log (base

color spectrum from blue to red was used to indicate the "busy-ness" of processors represented by
icons, with red being used to indicate the busy extreme and blue being used to indicate the idle

extreme.

4.3. EXPERIMENTAL RESULTS 141

2) of delay (expressed as a multiple of the normal delay expected for the FAIM-1

configuration) for a set of experiments performed using the random allocation men-

tioned above. Delays to the left of the speedup axis are sub-normal delays (down

to 2~10 times the normal delay) and delays to the right are super-normal delays

(up to 210 times the normal delay). The relative flatness of the curve to the left

of the speedup axis demonstrates that communication is not a bottleneck in this

case. However, as communication delays are increased beyond the normal delays,

the speedup for random allocation drops to zero asymptotically. Let us see how

a greedy allocation might perform in the two cases in which delays are increased.

When the number of processors is increased, the speedup expected from greedy al-

location should be as good or better than 17.642 (the speedup for the configuration

used for the greedy allocation experiment mentioned earlier). For the random allo-

cation case, a delay that is 4 times normal drops speedup to about 12.5. Given the

topology of FAIM-1 and the multiprocessor communication constants, it turns out

that this delay would be expected when the number of processors is increased to

about 4000. Let us look at the other case now. If communication delays are higher

overall for the multiprocessor, then communication cost will overwhelm processor

multiplexing cost beyond a certain point. Therefore, all computation will get allo-

cated to a single processor and speedup will be 1. In the random allocation case,

however, it could be arbitrarily close to zero. As a somewhat less extreme case, a

delay of 128 times the normal FAIM-1 delay drops the speedup below 1 (see figure).

This can easily happen if the multiprocessor does not have the type of specialized

communication support that FAIM-1 has.

On a different note, it was mentioned in section 3.1.4 that a possible improvement

in the communication cost might be to reduce it by the degree of communication

parallelism. There is some evidence that this might be true. A reasonable measure

of the degree of communication parallelism for a computation might be the average

parallelism given by its parallelism profile (assuming that the degree of communi-

cation parallelism is the same as the degree of processing parallelism). In the case

of the adder example, this is 30.371. An allocation was produced by reducing the

142 CHAPTER 4. ALLOCATION ALGORITHMS

o £> - <&

*22
3

■Q
a>
0)
Q.

C0 2O

18

■

\ / s

«
r6

14

12

10

a

6

•

<<

10 -8 -6

h

*

>>.
~o^

■ » -o
.4 -2 O 2 4 6 8 10

Log(Delay)

Figure 35: Speedup vs. Delay for Random Allocation

4.4. RELATED WORK 143

communication parameters (üfj, K2, and K3 in equation 1, section 3.1.4) by a fac-

tor of 32 (closest power of 2 to 30.371). This allocation produced by the procedure

GreedyAUocation" gives an average speedup of 18.250 as opposed to 17.642 with the

normal communication parameters. The speedup did improve by taking commu-

nication parallelism into consideration. However, this single data point should be

considered as suggestive evidence only. Conclusive proof can only be provided by

further research. Of course, there may be more accurate methods to take commu-

nication parallelism into account and the associated speedup improvement may be

even greater.

4.4 Related Work

4.4.1 Theoretical work

Previous theoretical work on scheduling (or allocation) for multiprocessors [37,39] is

not directly applicable here. There are many variations on the scheduling problem

but none of them include communication cost in a general way. There are many

interesting results, however, that may be good starting points for extensions that

consider communication. Extensions to approximation results such as Graham's

[29] would be tremendously useful. Another extension that would be required to

attack the scheduling problem in this thesis would be the inclusion of memory

constraints that limit the number of copies of certain pieces of the database (or

code in procedural languages).

4.4.2 Local Search

The local minimization algorithm discussed in this chapter is an application of a

general technique called Local Search in the optimization literature (see book by

Papadimitriou and Steiglitz [51], for example). The general algorithm is described

in the book by Papadimitriou and Steiglitz as follows:

Given an instance (F,c) of an optimization problem, where F is the feasible set

144 CHAPTER 4. ALLOCATION ALGORITHMS

and c is the cost mapping, we choose a neighborhood

N : F —► 2F

which is searched at point t £ F for improvements by the subroutine

. [any s € N(t) with c(s) < c(t) if such an s exists
lmprove(f) = <

y "no" otherwise

The book contains many examples of local search algorithms applied to the

travelling salesman problem and the uniform graph partitioning problem among

others. In addition, the book identifies some general issues in the development of

such algorithms. In many cases, local search has turned out to be a powerful opti-

mization technique and is often the best available. Unfortunately, the development

of local search algorithms remains largely an art and the demonstrations of utility

are empirical in nature.

Recall that in this thesis, the local minimization algorithm turned out not to be

very important. The starting point for local minimization (i.e., the result of greedy

allocation) was already quite good.

4.4.3 Compile-time Allocation for Dataflow

4.4.3.1 DDM2 from University of Utah

A paper by Martha Chamberlain and Alan Davis [11] describes what was probably

the first attempt at static allocation of dataflow programs. The target machine was

called DDM2 (a successor to DDM1) and a single processor version was operational

in 1979. Timing measurements taken from the single processor version were then

used to emulate a multiple processor version whose topology was a tree.

The input to the allocator is a type of dataflow graph called DDN (Data Driven

Net). The overall goal of the allocator was to massage this graph into a tree-

structured shape preserving as much of the locality as possible. Function-preserving

graph transformations such as replicating nodes and inserting dummy nodes for

extra synchronization were used.

4.4. RELATED WORK 145

The overall structure of the allocator consists of three top-level steps. First,

the DDN is converted to a TANTA graph (or Two-terminal, Acyclic graph with

No Transitive Arcs). Since DDN's are already two-terminal, this phase consists of

encapsulating cyclic iteration structures into single complex nodes and removing

transitive arcs. The second top level step is the conversion of TANTA graphs to SP

graphs (or series-parallel graphs). Different methods to do this lead to minimum

work or minimum time (i.e., minimum critical path). The third and final step is to

convert the SP graph to a tree by a series of folding operations.

In comparison with the allocator presented in this thesis, a lot of processing in

the DDM2 allocator is geared specifically towards the special-purpose tree topology.

The allocator in this thesis is not designed for any particular topology. Another

point of difference is that the DDM2 allocator makes the simple assumption of

equal computation cost for all nodes and single token communication along all arcs.

A considerable amount of theory was developed in this thesis (in chapter 3) to

generate more accurate predictive models of communication and processing. An-

other difference is in the area of exploiting the tradeoff between parallelism and

communication cost. The allocator in this thesis attempts to make this tradeoff

systematically based on the separate communication cost and processor multiplex-

ing cost components of the cost function. Program fragments that produce large

amounts of communication delay relative to the amount of parallelism exposed are

allocated to the same processor. In the extreme, the entire program may get allo-

cated to the same processor even when more processors are available. The DDM2

allocator will expose all concurrency if there are sufficient numbers of processors

available.

4.4.3.2 Hughes Dataflow Multiprocessor

Michael Campbell [10] describes another method for the compile-time allocation of

dataflow programs to the Hughes Dataflow Multiprocessor. The multiprocessor has

a bussed cube interconnection network. However, the allocation algorithms are not

designed to work with just that topology.

Allocation is based on a heuristic cost function that is a weighted sum of a

146 CHAPTER 4. ALLOCATION ALGORITHMS

communication cost and processing cost. Communication cost associated with the

allocation of a single node in the dataflow graph is the sum of the distances of arcs

connected with the node; distance is simply the number of hops from the processor

associated with the source node of an arc to the processor associated with the

destination node of the arc. No consideration is given to the size of the data in

each token transmitted along an arc or the number of tokens. The processing cost

is computed by first finding the transitive closure of the graph. Potentially parallel

nodes are those that do not have an arc connecting them in the transitive closure.

The processing cost associated with the allocation of a certain node to a processor

is computed from the number of potentially parallel nodes allocated to the same

processor. Each node is assumed to take the same computation time and no special

consideration is given to the multiple invocation of a node.

The differences from this thesis are the following: (1) A much simpler model of

communication is assumed here. (2) A much simpler model of processing is assumed.

(3) Potentially parallel computations are found by computing the transitive closure

of the graph. The allocator in this thesis performs an abstract simulation with

probabilistic analysis to find parallel computations. (4) A node may be allocated

to a single processor only. We allow multiple copies.

4.4.3.3 Vivek Sarkar's thesis

In his thesis Partitioning and Scheduling Parallel Programs for Execution on Multi-

processors [55], Vivek Sarkar describes another approach to compile-time allocation

for dataflow programs. This approach is interesting because it takes completion

time as the cost function as opposed to a combination of communication and pro-

cessing. Some differences from this thesis are described below. First, it assumes

that each processor has sufficient memory to execute the entire program unlike the

approach in this thesis. Second, profile information is used for estimates as opposed

to probabilistic estimates in this thesis. Finally, it is claimed that the approach is

applicable to topologies in which there could be delays that are a function of the

distance between processors. However, all experiments reported assume delays that

are independent of distance.

4.4. RELATED WORK 147

4.4.4 Kemal Oflazer's Thesis on Partitioning of Production

Systems

Kemal Oflazer discusses the partitioning problem for Production Systems (or Rule-

Based Systems), specifically 0PS5 [23], in his thesis Partitioning in Parallel Process-

ing of Production Systems [50] and an earlier paper [49]. This partitioning problem

is described as the compile-time allocation of productions (or rules) to processors

in such a way that the total time of execution is minimized.

A production system interpreter repeatedly executes a recognize-act cycle. This

cycle consists of 3 phases—Match, Conflict-Resolution, and Act. The Match phase

finds all productions that may be fired, the Conflict-Resolution phase picks a single

production to be fired, and the Act phase performs the changes to the database

mandated by the chosen production. Note that the Conflict-Resolution phase is a

synchronization point during every cycle.

In Oflazer's parallel processor organization for partitioning, a set of processors

contains mutually exclusive and exhaustive subsets of the productions in the sys-

tems. Each processor also contains the state associated with its subset of the pro-

ductions. The goal of each processor is to make any changes to its state mandated

by the previous Act phase, find the matching productions, and report them to some

central processing location. The central processor performs the Conflict Resolution

phase and identifies the state changes mandated by the chosen production to the

relevant processors. Since most of the processing in production systems takes place

during the Match phase, Oflazer's model ignores the processing cost during the

Conflict-Resolution phase and the Act phase. In addition, communication cost be-

tween the parallel processors and the central processing location is ignored because

it is a small amount of data.

This work is different from our model in the following ways. First, the presence

of a synchronization point during every interpreter cycle makes it a very different

type of computation. There are no such synchronization points in dataflow* graphs.

Second, communication cost is not a factor in Oflazer's work whereas it is a central

focus of the work in this thesis. Third, Oflazer takes the estimates for processing

148 CHAPTER 4. ALLOCATION ALGORITHMS

costs from previous executions of the same production system. In our case, estimates

are produced by probabilistic analysis.

4.4.5 Compile-time Allocation of Actor Languages

Bill Athas has recently completed a thesis on compile-time allocation for a concur-

rent, object-oriented programming language called Cantor [4]. Unfortunately, the

thesis was not available in time to make a detailed comparison.

4.4.6 Run-time Allocation

A lot of research has been done in the area of run-time allocation for many different

types of computations. It is not possible to discuss all the work here but some

interesting pieces of work are mentioned below. As mentioned earlier in chapter 1,

run-time allocation has the disadvantage that the overhead of decision-making must

be paid at run-time. However, if the behavior of the program is highly dynamic

and is hard to predict at compile-time, then run-time allocation may be the best

approach.

Smith [66] has presented a protocol called Contract Net to dynamically distribute

tasks among processors in a distributed system. Each task is distributed using

an Announcement-Bid-Award sequence. A task to be distributed is announced as

being available, processors may bid to do the task, and the announcing processor

may then award the contract to one of the processors. The idea was to propose

a more flexible framework than some other rigid frameworks like remote procedure

calls [47], for example.
Malone et. al [42] have proposed an interesting specialization of the Contract

Net (called Enterprise) and showed some good connections to scheduling theory

results. Singh and Genesereth [61] proposed another specialization of the Contract

Net (called Variable Supply Model) that was shown to be an efficient and flexible

approach to distributing or-parallel tasks on a broadcast network.

Hornig [36] has designed a distributed reduction-style interpreter for a functional

4.4. RELATED WORK 149

language he designed called Stardust. An interesting feature of this work is that user-

defined functions are annotated with time estimates provided by the user. Time

estimates can be arbitrary functions of the arguments to the function. Several

examples were presented in which time estimates can be provided reasonably. Such

time estimates could be useful for compile-time allocation as well.

Haridi and Ciepielewski [33] have described a token-pool mechanism to distribute

or-parallel logic programs. The idea is that or-parallel computations are encapsu-

lated in tokens. These tokens may be placed in the pool as they are generated

and picked up by other processors. The difference from the Contract Net is that

computations are not handed over directly from the spawning processor to the con-

tracting processor. The token pool acts as an intermediary between the spawning

processor and the contracting processor. However, the token pool seems to be a

passive entity. Therefore, the spawning processor does not have any control over

which contracting processor gets selected for any spawned computation.

Hermenegildo [34] and some others have provided an interesting twist to this

idea of the token pool. The idea is that computations that can be spawned off to

remote processors are simply kept in local storage at some well-known location. Re-

mote processors can retrieve these parallel computations completely independently

without any intervention of the local processor. Some special hardware may be

needed for this mechanism but it has the advantage that the busy processors do not

have to pay the overhead of distribution. It is the idle processors that must spend

some time searching for some parallel computations to start working on.

4.4.7 Programmed Allocation

Shapiro [58] has described a notation for programmers to specify their own allo-

cations for Concurrent Prolog programs [57]. The notation is based on the turtle

notation of LOGO programs [52] and is very elegant. However, the programmer

must have a very good idea of the structure of the program to make use of it. In

cases where the dynamic behavior of the program is not well-known by the user,

user-specified allocations are not likely to perform well.

150 CHAPTER 4. ALLOCATION ALGORITHMS

4.5 Conclusions

This chapter contained the description of a compile-time allocation strategy based

on a cost function that is not specific to any particular domain or multiprocessor.

It was shown that the algorithms involved are tractable (i.e., they have polynomial

worst-case time complexity). For the 4-bit adder example, this allocation strategy

produced speedups that were more than half an unreachable upper bound. In the

FAIM-1 configuration considered, communication costs are not high; therefore, even

a random allocation does quite well (though not as well as greedy allocation). In

general, it is possible that random allocations may perform arbitrarily worse than

the allocation strategy presented here.

Chapter 5

Conclusions

5.1 Summary of Key Ideas

In this thesis, we presented solutions to two problems: (1) the design of a parallel

execution model for backward-chaining deductions and (2) the allocation of the

resulting parallel computations to an interesting class of multiprocessors.

The target class of multiprocessors has the following properties: (1) there are an

arbitrary number of MIMD processors; (2) each processor has some local memory

but there is no global memory; (3) processors can communicate only by sending

messages to each other; (4) message delay is a function of the amount of data in the

message and the distance between source and destination; and (5) each processor

can perform backward-chaining deductions based on the subset of the program that

it contains.

PM, the parallel execution model described in chapter 2, exploits more paral-

lelism than other execution models that use data-driven control and the same target

class of multiprocessors. In particular, PM exploits or-parallelism, and-paralhlism

and pipelining. The extra parallelism can be an important advantage in a situa-

tion where a large number of processors are available. Data-driven control leads to

minimal synchronization overhead and means that the inherent parallelism can be

fully exploited. The chapter included a correctness theorem that stated that the

151

152 CHAPTER 5. CONCLUSIONS

set of solutions produced by PM is identical to the set of solutions produced by a

Prolog interpreter. PM does not assume that the entire program can be stored in

each processor's local memory. Therefore, larger programs can be run compared to

the case in which a copy of the entire program is required in each processor's local

memory.

We described a compile-time allocation strategy for PM in chapters 3 and 4. In

order to compare different allocations, the strategy uses a cost function (described

in chapter 3) that applies to any application and multiprocessor (in the target mul-

tiprocessor class). The cost function attempts to capture intuitive notions of the

quality of allocations. The completion time of the computation, assuming zero com-

putation delays and infinite processors, is the completion time for the associated

parallelism profile. The non-zero delays and sequentialization of parallel computa-

tion associated with a realistic multiprocessor will increase this completion time.

The cost function is denned to be an upper bound on this additional delay assuming

that the effects of non-zero communication delays and sequentialization of parallel

computation (due to a finite number of processors) are independent and, therefore,

additive. The upper bound on the extra delay due to non-zero communication is

given by the sum of all communication delays. This is called the communication

cost of the computation. The upper bound on the extra delay due to sequentializa-

tion of parallel computation is called the processor multiplexing cost. The overall

cost is the sum of the communication cost and the processor multiplexing cost.

An important feature of this cost function is that it can be efficiently computed

and recomputed (for small changes in the allocation). Algorithms were presented

for this computation and recomputation. Unfortunately, the algorithms require

certain restrictions that PMdoes not require. First, the type of backward-chaining

deduction is restricted. In particular, no recursive clauses are allowed, unit clauses

must be ground, and certain probabilistic uniformity and independence assumptions

must apply. Second, a partitioning of the database is assumed to be given.

Some of the probabilistic techniques used in the cost computation algorithms

should be useful in other contexts as well. A couple of examples are given below.

First, the Communication Estimation algorithm computes the expected amount of

5.1. SUMMARY OF KEY IDEAS 153

communication between each pair of partitions. Since the trade-off between com-

munication and parallelism seems to be so fundamental for the allocation problem,

estimating communication should be useful for other allocation strategies. Second,

computing the parallelism profile is a side-effect of the processor multiplexing cost

computation. Parallelism profiles have been used for allocation strategies other than

the one described here [55]. In addition, they are used sometimes simply for the

purpose of estimating the amount of parallelism inherent in an application.

In chapter 4, we described a search strategy for finding a satisfactory allocation in

the space of possible allocations. The search strategy consisted of a greedy allocation

phase followed by a local minimization phase. Greedy allocation allocates partitions

of the database to processors one at a time. A partition is allocated to the lowest

cost processor without re-allocating any partitions that were allocated previously.

The local minimization phase consists of a sequence of cost-reducing re-allocations

of partitions to neighboring processors till a local minimum is reached. It was shown

that both greedy allocation and each round of local minimization have worst-case

time complexities that are polynomial.

Experiments indicate that greedy allocation alone produces quite satisfactory

answers. For the 4-bit digital adder example that was tried on a simulation of the

FAIM-1 multiprocessor, the speedup achieved by using the greedy allocation was

more than half of an unreachable upper bound. Also, the speedup achieved was

somewhat better than that achieved by using random allocation. More analysis re-

vealed that random allocation works so well because this particular example is not

communication intensive at all. There are at least two cases where the difference in

performance between the allocation strategy advocated and the random allocation

strategy can be expected to be significant. First, a higher number of processors will

increase the average distance and, therefore, the average delay for the random allo-

cation case. However, average distances need not increase at all for the allocation

strategy advocated when more processors are used. Second, higher communication

constants associated with a different multiprocessor with less communication sup-

port can cause the speedup to be arbitrarily close to zero. However, the allocation

strategy advocated here will allocate all computation to a single processor (with a

154 CHAPTER 5. CONCLUSIONS

speedup of 1) when communication cost overwhelms processor multiplexing cost.

5.2 Directions for Future Research

Two versions of the greedy allocation algorithm were described in chapter 4—

Greedy Allocation and GreedyAllocation"'. However, experiments were conducted

only with Greedy Allocation". It is quite possible that Greedy Allocation' will lead to

better allocations since the number of multiple copies is chosen in a less arbitrary

manner than in Greedy Allocation". The disadvantage of using GreedyAllocation' is

that it has a higher time complexity.

A constraint that was kept in mind while designing the current cost function

was to make recomputation efficient when small changes are made to the allocation.

However, as the experiments indicate, greedy allocation by itself produced quite

reasonable allocations without using local minimization at all. Since recomputation

is useful only for local minimization, there is the possibility now of using a different

cost function that is not as pessimistic as the current cost function and one that is

not necessarily designed for efficient recomputation. A more accurate cost function

of this type has the potential of improving the quality of the greedy allocation

algorithm.
At present, the allocation techniques do not apply to recursive cases. If arbitrary

recursions are allowed, it becomes undecidable to predict the amount of processing

and communication required for a parallel computation.1 Therefore, good alloca-

tion decisions are unlikely. However, it may be possible to reason automatically

about restricted recursive cases. Even in cases where completely automatic alloca-

tion is not possible, users may provide information about parallel computation and

communication to make reasonable allocation decisions possible.

In many Artificial Intelligence problems, a single solution is required for the

problem at hand. It should be possible to extend PM to kill off redundant processes

when the first solution has been found. It may be harder to extend the allocation

techniques to reason about the modified parallel execution model. On a related

lrrhis follows directly from the halting problem.

5.2. DIRECTIONS FOR FUTURE RESEARCH 155

issue, PM should be modified to kill off processes associated with sibling and-nodes

when no solution is found for any one of the and-nodes.

Over the years, researchers have developed compilation techniques for Prolog

that make it execute at comparable speeds with other programming languages for

comparable problems [73,72]. More attention should be directed towards applying

this compilation technology, perhaps with extensions, to parallel execution models

like PM.

Although backward-chaining deduction has been found to be very useful for a

wide range of problems, other types of deduction are more natural for certain ap-

plications. For example, simulation is better done with forward-chaining deduction

[60] and planning problems are better handled with Residue [21]. Techniques for

exposing the parallelism in these types of deduction will be needed if the associated

applications are to be speeded up.

The allocation techniques described in this thesis were directed towards Horn

clause databases without any additional annotations. In the literature, this is called

the implicit parallelism case for logic programming in contrast to logic programming

languages that require explicit annotations to express producer-consumer relation-

ships between processes. Explicitly parallel logic programming languages include

Concurrent Prolog [57], PARLOG [30], and Guarded Horn Clauses (GHC) [71]. The

extent to which the allocation techniques in this thesis are applicable to these lan-

guages remains to be seen. Going even further, the applicability of the allocation

techniques to other programming paradigms like object-oriented languages (e.g.,

Actors [1]) and Lisp-based languages (e.g., Qlisp [26] and Multilisp [31,32]) should

be investigated.

As mentioned earlier, compile-time allocation works best when good estimates

can be made at compile-time about run-time program behavior. If good compile-

time predictions can be made for some parts of the program and not for others,

it may make sense to use a hybrid strategy using both compile-time and run-time

allocation. A hybrid strategy may also include some user-specified allocations when

the user already knows how to allocate a piece of the computation exceptionally

well.

156 CHAPTER 5. CONCLUSIONS

Appendix A

Partial Order Algorithm

This algorithm describes how to pick a partial order for a conjunctive goal. In

particular, the partial order is represented by a directed, acyclic graph of nodes

representing the conjuncts.

On invoking a rule in backward-chaining, the antecedents of the rule become a

new conjunctive subgoal that the inference engine may try to prove. Assume that

appropriate bindings, resulting from the unification of the goal with the consequent

of the rule, have been plugged into the antecedents.

A.l Definitions

Let Ci through C„ be the antecedents of the rule in order from left to right. Let

CL be the ordered set of the antecedents of the rule.

CL =< Ci, Ci,..., Cn >

The function v is denned to take a literal as argument and return the set of

variables in the literal. For example,

v(p(x,y,c)) = {x,r}

157

158 APPENDIX A. PARTIAL ORDER ALGORITHM

The function vl is defined to take an ordered set of literals and return the set of

variables in the literals.
n

vl(<C1,C2,...,Cn>) = {Jv(Ci)

For example,

vl(< p(X, Y, cl),q(Y, Z, c2) >) = {X, Y, Z}

Let d(Ci,Cj) be true if and only if there is a directed arc between the corre-

sponding nodes in the conjunct graph.

As described in chapter 2, PM allows conjuncts to be solved in parallel only

if previously solved conjuncts have already bound any shared variables that they

may have. Let us call this constraint the shared-variable constraint. Restating the

constraint, a single conjunct must first bind any given variable in vl(CL), where CL

is the ordered set of conjuncts, before other conjuncts that share the same variable

can be solved. This distinguished conjunct is called the generator conjunct for the

variable in question. Let g(V, d) be true if and only if C* is the generator conjunct

of the variable V.

A.2 Assumption

No assertions (i.e., unit clauses in a horn clause database) contain any variables.

A.3 Algorithm

Input: CL, an ordered set of conjuncts

Output: A conjunct graph (i.e., a set of directed arcs between the conjuncts) such

that (1) the partial order represented by the conjunct graph is a subset of the total

order given in the input, (2) the partial order is the minimal one satisfying condition

(1) and the shared-variable constraint, and (3) the conjunct graph is a minimal

representation of the partial order. The term "minimal" is used with reference to

the number of edges.

A.3. ALGORITHM 159

Condition (1) is chosen because it is expected that if the original total order

is an efficient one, then subsets of it are also efficient. Condition (2) is chosen

so that parallelism is maximized. Condition (3) is chosen so that communication

requirements for PM are minimized. Reduced communication also translates into

reduced computation at the nodes where the communication is directed.

There are three parts of the algorithm and these are now described one by one.

The first part of the algorithm picks a generator conjunct for each variable. For

each variable in vl(CL), pick the leftmost conjunct, C„ in CL, such that the variable

is contained in t>(C<). This conjunct is declared to be the generator of the variable

in question. The complexity of this part of the algorithm is 0(n x k), where n is

the number of conjuncts and k is the number of variables.

This can be illustrated with an example. Consider the conjunctive goal

p(X)Aq(Y)*s(X,Y)

In this case,

CL =< C\,Ci,C$ >

Ci = P(X)

C2 = q(Y)

C3 = s(X,Y)

vl(CL) = {X,Y}

v(Ci) = {X}

v(C2) = {Y}

v(C3) = {X,Y}

The generator conjuncts are described by g(X,Ci) and g(Y,C2).

In the second part of the algorithm, directed arcs are introduced between the gen-

erator conjuncts and other conjuncts. For each generator conjunct and each other

conjunct that contains the variable generated by the generator, insert a directed arc

between the corresponding nodes in the partial order graph. The complexity of this

is Oiri2), where n is the number of conjuncts in CL. Again, this is best illustrated

160 APPENDIX A. PARTIAL ORDER ALGORITHM

by an example. Consider the same example that was just considered above for pick-

ing the generator conjuncts. Since the generator conjunct for variable X is C\ (i.e.,

p(X)) and it is the case that C3 (i.e., s(X,Y)) contains the same variable, a directed

arc, d(CuCz), is introduced. Similar reasoning leads to the only other directed

arc d(C2,C3). At this point, the partial order described by the set of directed arcs

satisfies the shared-variable constraint. However, tb?s may not be a minimal partial

order satisfying the constraint as shown in a different example below.

It is possible that the partial order generated by the algorithm so far is as given

below:

MCi.CaMCCa.Cs), <*(<?!, C3)}

This would happen if the variables contained in Cx, C2, and C3 are {X}, {X, Y},

and {X,Y,Z} respectively. The arc d(Ci,C3) represents a redundant arc and can

be removed while still maintaining the shared-variable constraint. Such arcs are

called transitive arcs. An arc is a transitive arc if and only if there is a longer path

between the end nodes of the arc.

A paper by Aho, Garey, and Ullman [2] shows how to remove all these transitive

arcs from a directed, acyclic graph in time 0(n3), where n is the number of vertices.

The output of the algorithm is called the transitive reduction of the input graph.

This transitive reduction algorithm is the third part of the partial order algorithm.

The overall complexity of the partial order algorithm is obtained by adding the

complexities of the three component procedures. The complexity is 0(n x k+n2+n3)

or 0(n3), assuming that k is 0(n3).

A.4 Another Example

Consider the rule

color(A,B,C,D,E):-

next(A, B) A next(C, D) A next(A, C) A next(A, D) A

next(B, C) A next(B, E) A next(C, E) A next(D, E)

AA. ANOTHER EXAMPLE 161

This rule is part of the database used for a particular instance of the four color

problem. A goal
color(A,B,C,D,E)

would generate the conjunctive subgoal

next(A, B) A next(C, D) A nexi(A, C) A next(A, D) A

nexi(B, C) A next(B, E) A nexi{C, E) A next(D, E)

Now, nexi(A, B) is the generator for both A and B. Also, next(C, D) is the gener-

ator for both C and D. Finally, next(B, E) is the generator for E.

The partial order contains the following directed arcs: From next(A,B) to each

member of {next(A,C),next{A,D),next(B,C),next(B,E)}, from next{C,D) to

each member of {next(A,C),nexi(A,D),next(B,C),next(C,E),next(D,E)}, and

from next(B,E) to each member of {next(C,E),next(D,E)}.

There are no transitive arcs to remove in this case.

162 APPENDIX A. PARTIAL ORDER ALGORITHM

Appendix B

Details of Procedure PMCCA-1

The procedure PMCCA-1 is used to compute processor multiplexing cost for a

single processor. Chapter 3 described this procedure but omitted details of the

two procedures InsertPI and DeletePI. These procedures are given in this appendix

in more detail (in sections B.2 and B.3). The procedures use the abstract data

structure called PQ-list and its description is repeated in section B.l for the reader's

convenience.

Pseudo-Pascal code is given for the procedures, with comments being delimited

by "/*" on the left and "*/" on the right.

B.l PQ-list Data Structure

This abstract data structure has three associated abstract operations as described

in chapter 3.

1. InsertPQL(PQL, element, key): This inserts the element element into the

PQ-list PQL in log time. In addition, the CLoad field of the element is set

to the CLoad field of the previous element (in sorted order). If there is no

previous element, then the field is set to zero.

2. DelettPQL(PQL, element): This deletes element from PQL in log time.

163

164 APPENDIX B. DETAILS OF PROCEDURE PMCCA-1

3. EnumeratePQL(PQL, elementl, element2): Enumerates all elements in PQL

in sorted order from the element elementl to the element elements. This is

done in time linear in the number of elements enumerated.

The list is doubly-linked to allow forward or backward traversal. The utility

of backward pointers will become apparent later in the description of procedures

InsertPI and DeletePI.

B.2 Procedure InsertPI

The InsertPI procedure is given in figure 36.

The insert procedure uses InsertPQL to insert the two end-points of the process-

ing intervals as two elements into the PQ-list. It also enumerates all the elements

from the start element to the finish element and modifies their CLoad appropriately

to reflect the change. In addition, PMC is changed as each element is considered.

The correct PMC is available at the end of the procedure.

B.3 Procedure DeletePI

The DeletePI procedure is given in figure 37.

The delete procedure enumerates all the elements from the start element to the

finish element. It modifies the CLoad values of the elements appropriately. Also,

PMC associated with the PQ-list is changed as each element is considered. The

correct PMC is available at the end of the procedure. Moreover, the start and

finish elements are deleted from the data-structure (using DeletePQL) when they

are enumerated.

B.3. PROCEDURE DELETEPI 165

Procedure InsertPI(PI, PQList);
begin

HI *— PI.Processor Load;
I* PMC =Current value of processor multiplexing cost */
StartElem *- InsertPQL(start(PI), start(PI).Time);
FinishElem <- InsertPQL(finish(PI), finish(PI).Time);
If StartElem.Prev ^ nil then begin
/* The prev field is the previous element in sorted order. */

CLoadPrev *- StartElem.Prev.CLoad;
CLoadPrevOld <- StartElem.Prev.CLoad;
TimePrev <- StartElem.Prev.Time

end
else begin

CLoadPrev <- 0;
CLoadPrevOld <- 0;
TimePrev <- 0

end;
For all Elem G EnumeratePQL(PQList, StartElem, FinishElem) do begin

PMC <- PMC+ [max(0, CLoadPrev - 1) - max(0, CLoadPrevOld - l)]x
(Elem.Time - TimePrev);

CLoadPrevOld <- Elem.CLoad;
If Elem j£ FinishElem then

Elem.CLoad <- Elem.CLoad + HI;
CLoadPrev «— Elem.CLoad;
TimePrev <— Elem.Time

end /* for */
end; /* InsertPI*/

Figure 36: Procedure InsertPI

166 APPENDIX B. DETAILS OF PROCEDURE PMCCA-1

Procedure DeletePI(Eleml, Elem2, PQList);
begin

HI *- PI .Processor Load;
I* PMC =Current value of processor multiplexing cost */
If Eleml.Prev.CLoad ^ nil then begin

CLoadPrev <- Eleml.Prev.CLoad;
CLoadPrevOld *- Eleml.Prev.CLoad;
TimePrev *- Eleml.P rev.Time

end
else begin

CLoadPrev «- 0;
CLoadPrevOld <- 0;
TimePrev <- 0

end;
For all Elem € EnumeratePQL(PQList, Eleml, Elem2) do begin

PMC <- PMC+ [max(0, CLoadPrev - 1) - max(0, CLoadPrevOld - l)]x
(Elem.Time - TimePrev);

CLoadPrevOld = Elem.CLoad;
If Elem ^ Eleml then

Elem.CLoad = Elem.CLoad - HI;
CLoadPrev — Elem.CLoad;
If Elem = Eleml or Elem = Eleml then

DeletePQL(PQList, Elem);
TimePrev <— Elem.Time;

end /* for */
end; /* DeletePI*/

Figure 37: Procedure DeletePI

Appendix C

Greedy Allocation is not Locally

Optimal

This appendix presents an example where greedy allocation does not produce a

locally optimal solution. Consider the dataflow* graph in figure 38 and the processor

topology shown in figure 39. Assume that there is no processing overlap between

nodes A or B with C. Also, let there be no overlap between nodes B or C with D. Let

the amounts of communication between the node pairs A and B and separately A

and C be very low and equal to each other. Also, let the amounts of communication

between the node pairs B and D and separately C and D be very high and equal to

each other. If the greedy allocation algorithm allocates the nodes in the topological

order A, B, C, and then D, a possible allocation may be as given below:

B—>1

D—>1

When B and C get allocated by the greedy allocation procedure, the only com-

munication considered is from A to B and C. However, this is not necessarily the

167

168 APPENDIX C. GREEDY ALLOCATION IS NOT LOCALLY OPTIMAL

D

Figure 38: A Dataflow* Graph

7 6

Figure 39: A Processor Topology

169

locally optimal solution. If communication from B and C to D is high enough rela-

tive to the communication from A to B and C, then it may reduce the cost function

by moving C from processor 2 to 1. Although the processor multiplexing cost is

increased, the effect due to reduction of communication cost may be greater.

170 APPENDIX C. GREEDY ALLOCATION IS NOT LOCALLY OPTIMAL

Appendix D

Local Minimization is not

Globally Optimal

This appendix presents an example where local minimization of an allocation does

not produce a globally optimal solution. Consider the dataflow* graph in figure 40

and the processor topology shown in figure 41. Assume that there is no processing

overlap between node A with any of the nodes in the set {B, C, D, E}. Also, assume

that there is no overlap between any of the nodes in the set {B, C, D, E} with node

F. Let the amounts of communication from A with any node in the set {B, C, D,

E} be equal and very low. Let the amounts of communication from any node in {B,

C, D, E} with node F be equal and very large. Assume, in addition, that memory

requirements dictate that at most one node may be allocated to a single processor.

If the greedy allocation algorithm allocates nodes in the topological order A, B, C,

D, E, and then F, a possible allocation may be as given below:

B —>2

C —+4

D—>6

171

172 APPENDIX D. LOCAL MINIMIZATION IS NOT GLOBALLY OPTIMAL

Figure 40: A Dataflow* Graph

'3— > <
4

>
5

2

o 1

1

> 1

6

»
8

Figure 41: A Processor Topology

The allocation produced by the greedy allocation procedure is already a locally

optimal solution because any feasible local neighbor has a higher «-*• ="""«•

it is easy to see that this not necessarily the globally optimal solution. G.ven tha

communication from nodes in the set {B, C, D. E} to F is high enough compared

to the communication from A to the nodes in the set {B, 0, D, E}, «ben a lower

cost solution is given below:
F—+1

B

C

2

4

173

D—*6

E—>8

It is interesting to note that if the order chosen for greedy allocation had been

reversed, this lower cost allocation would have been the one generated.

Examples can also be generated that are locally optimal but not globally optimal

and where the size of memory is not an issue.

174 APPENDIX D. LOCAL MINIMIZATION IS NOT GLOBALLY OPTIMAL

Appendix E

Adder Example

E.l Syntax and Notation

Anything followed by ";'' on a line is a comment. The syntax for facts and rules

in MRS is different from the standard Prolog syntax. Variables are symbols that

begin with the character "$". A literal in Prolog as in

<predicate>(<fieldl>,<field2>,...,<fieldn>)

is written in MRS as

(<predicate> <fieldl> <field2> ... <fieldn>).

A rule in Prolog as in

<goal> :- <subgoall>,<subgoal2>,...,<subgoaln>

is written in MRS as

(if (and <subgoall> <subgoal2> ... <subgoaln>) <goal>).

In addition, a fact at compile-time is represented in a different way than at run-

time. Compile-time facts are written as

(fact <run-time-fact> <list-of-variables> <number>).

<list-of-variables> indicates that all the variables in the list are actually un-

known constants in the run-time fact <run-time-fact>. <number> is the number

of facts matching this fact pattern that are expected to be present at run-time.

The device whose structure and behavior is captured here is called "F00". It

175

176 APPENDIXE. ADDER EXAMPLE

is a 4-bit adder. The database contains many literals of the form

(VALUE (PORT <port-name> <device>) <value>).

This is intended to mean that the value of the specified port <port> of device

<device> is <value>. <device> is either the top-level device "F00" or parts of

it specified in a hierarchical fashion. (PART (NUM FA i) F00) for i from 1 to 4

stands for the ith 1-bit full adder. Each 1-bit full adder is composed of 5 gates: 1

or gate, 2 exclusive-or gates, and 2 and gates. An example of a device at this lowest

level is (PART 0R1 (PART (NUM FA 4.) F00)) This represents the 1st or gate

(0R1) of the 4th 1-bit full adder (FA) of the top-level device (FOO).

E.2 Adder Database

E.2.1 Adder Database at Run-Time

;;; External input« at mn-tin«

(VALUE (POM III (PULT (IUK FA 1.) F00)) 1.)

(VALUE (PORT III (PAKT (IUM FA 2.) F00)) 1.)

(VALUE (PORT III (PART (IUM FA 3.) F00)) 1.)

(VALUE (PORT III (PART (IUH FA 4.) F00)) 1.)

(VALUE (PORT in (PART (IUH FA 1.) F00)) 1.)

(VALUE (PORT 113 (PART (IUH FA 2.) F00>) 0.)

(VALUE (PORT in (PART (IUH FA 3.) FOO)) 0.)

(VALUE (PORT 113 (PART (IUH FA 4.) FOO)) 0.)

(VALUE (PORT CII (PART (IUH FA 1.) FOO)) 0.)

E.2. ADDER DATABASE

III End of external inputs

i t S !!!!!!! »if!!!!!!! illillilltill'tii iiiüü! !!!!!!!!!!! !!!!!!!!!!!!

(IF (VALUE (PORT OUT (PART OR1 (PART (IUH FA 1.) FOO))) $3S8.)

(VALUE (POET coin (PART (IUH FA 1 .) FOO)) $3E8.))

(IF (VALUE (PORT OUT (PART OR1 (PART (IUH FA 2.) FOO))) $358.)

(VALUE (PORT coin (PART (IUH FA 2 .) FOO)) »368.))

(IF (VALUE (PORT OUT (PART 0R1 (PART (IUH FA 3.) FOO))) $354.)

(VALUE (PORT coin (PART (IUH FA 3.) FOO)) $354.))

(IF (VALUE (PORT OUT (PART OR1 (PART (IUH FA 4.) FOO))) $352.)

(VALUE (PORT com (PART (IUH FA 4 .) FOO)) »362.))

(IF (VALUE (PORT OUT (PART Z0R2 (PART (IUH FA 1.) FOO))) $360.)

(VALUE (PORT SUH (PART (IUH FA 1.) FOO)) $350.))

(IF (VALUE (PORT OUT (PART Z0R2 (PART (IUH FA 2.) FOO))) $348.)

(VALUE (PORT SUM (PART (IUH FA 2.) FOO)) (348.))

(IF (VALUE (PORT OUT (PART Z0R2 (PART (IUH FA 3.) FOO))) $346.)

(VALUE (PORT SUH (PART (IUH FA 3.) FOO)) »348.))

(IF (VALUE (PORT OUT (PART Z0R2 (PART (IUH FA 4.) FOO))) $344.)

(VALUE (PORT SUH (PART (IUH FA 4.) FOO)) $344.))

(IF (VALUE (PORT CII (PART (IUH FA 1.) FOO)) $342.)

(VALUE (PORT III (PART AID2 (PART (IUH FA

1 rnn^

1.) FOO))) $342.))

177

(VALUE (PORT III (PART AID2 (PART (IUH FA 2.) FOO))) $340.))

(IF (VALUE (PORT CII (PART (IUH FA 3.) FOO)) $338.)

(VALUE (PORT III (PART AID2 (PART (IUH FA 3.) FOO))) $338.))

(IF (VALUE (PORT CII (PART (IUH FA 4.) FOO)) $336.)

(VALUE (PORT III (PART AID2 (PART (IUH FA 4.) FOO))) $336.))

178 APPENDIXE. ADDER EXAMPLE

(IF (VALUE (PORT CXI (PAKT (IUH Fl 1.) F00)) $334.)

(VALUE (PORT IK (PART X0R2 (PART (IUH FA 1.) F00)>) »334.))

(IF (VALUE (PORT CQ (PART (IUH FA 2.) F00)) »332.)

(VALUE (PORT 112 (PART I0R2 (PART (IUH FA 2.) F00)>) $332.))

(IF (VALUE (PORT CII (PART (IUH FA 3.) F00)) $330.)

(VALUE (PORT 112 (PART X0R2 (PART (IUH FA 3.) FOO))) $330.))

(IF (VALUE (PORT CII (PART (IUH FA 4.) FOO)) $328.)

(VALUE (PORT 112 (PART X0R2 (PART (IUK FA 4.) FOO))) $328.))

(IF (VALUE (PORT 112 (PART (IUH FA 1.) FOO)) $328.)

(VALUE (PORT 112 (PART AID1 (PART (IUH FA 1.) FOO))) »328.))

(IF (VALUE (PORT 112 (PART (IUH FA 2.) FOO)) »324.)

(VALUE (PORT 112 (PART AID1 (PART (IUH FA 2.) FOO))) »324.))

(IF (VALUE (PORT 112 (PART (IUH FA 3.) FOO)) 1322.)

(VALUE (PORT 112 (PART AID1 (PART (IUH FA 3.) FOO))) «322.))

(IF (VALUE (PORT 112 (PART (IUH FA 4.) FOO)) 1320.)

(VALUE (PORT 112 (PART AIDi (PART (IUH FA 4.) FOO))) $320.))

(IF (VALUE (PORT 112 (PART (IUH FA 1.) FOO)) $318.)

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 1.) FOO))) $318.))

(IF (VALUE (PORT 112 (PART (IUH FA 2.) FOO)) $318.)

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 2.) FOO))) $316.))

(IF (VALUE (PORT 112 (PART (IUH FA 3.) FOO)) $314.)

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 3.) FOO))) $314.))

(IF (VALUE (PORT 112 (PART (IUH FA 4.) FOO)) $312.)

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 4.) FOO))) $312.))

(IF (VALUE (PORT III (PART (IUH FA 1.) FOO)) $310.)

E.2. ADDER DATABASE 179

(VALUE (PORT III (PIKT AID1 (PIKT (IUH FA 1.) FOO))) »310.))

(IF (VALUE (POET III (PAKT (IUH FA 2.) FOO)) $308.)

(VALUE (PORT III (PART ATD1 (PART (TUM FA 2.) FOO))) «308.))

(IF (VALUE (PORT III (PART (IUH FA 3.) FOO)) $306.)

(VALUE (PORT III (PART ATD1 (PART (IUH FA 3.) FOO))) $300.))

(IF (VALUE (PORT III (PART (IUK FA 4.) FOO)) $304.)

(VALUE (PORT III (PART AIM (PART (IUH FA 4.) FOO))) $304.))

(IF (VALUE (PORT III (PART (IUH FA 1.) FOO)) $302.)

(VALUE (PORT III (PART X0R1 (PART (IUH FA 1.) FOO))) $302.))

(IF (VALUE (PORT III (PART (IUH FA 2.) FOO)) $300.)

(VALUE (PORT III (PART Z0R1 (PART (IUH FA 2.) FOO))) $300.))

(IF (VALUE (PORT III (PART (IUH FA 3.) FOO)) $298.)

(VALUE (PORT III (PART Z0R1 (PART (TUN FA 3.) FOO))) $298.))

(IF (VALUE (PORT III (PART (IUH FA 4.) FOO)) $296.)

(VALUE (PORT III (PART Z0R1 (PART (IUH FA 4.) FOO))) $296.))

(IF (VALUE (PORT COUT (PART (IUH FA 1.) FOO)) $276.)

(VALUE (PORT CII (PART (IUK FA 2.) FOO)) $275.))

(IF (VALUE (PORT COUT (PART (IUH FA 2.) FOO)) $273.)

(VALUE (PORT CII (PART (IUH FA 3.) FOO)) $273.))

(IF (VALUE (PORT COUT (PART (IUH FA 3.) FOO)) $271.)

(VALUE (PORT CII (PART (IUH FA 4.) FOO)) $271.))

(IF (VALUE (PORT OUT (PART AID2 (PART (IUH FA 1.) FOO))) $269.)

(VALUE (PORT III (PART OKI (PART (IUH FA 1.) FOO))) $269.))

(IF (VALUE (PORT OUT (PART AID1 (PART (IUH FA 1.) FOO))) $267.)

(VALUE (PORT 112 (PART 0R1 (PART (IUH FA 1.) FOO))) $267.))

180 APPENDIXE. ADDER EXAMPLE

(IF (VALUE (PORT OUT (PART X0R1 (PiRT (IUH FA 1.) FOO))) $286.)

(VALUE (PORT in (PART AIDS (PART (IUM FA 1.) FOO») »265.))

(IF (VALUE (PORT OUT (PART X0R1 (PART (IUM FA 1.) FOO») »263.)

(VALUE (PORT III (PART X0R2 (PART (IUM FA 1.) FOO))) »283.))

(IF (AID (VALUE (PORT III (PART AID2 (PART (IUM FA 1.) FOO))) 1.)

(VALUE (PORT XI2 (PART AIB2 (PART (IUM FA 1.) FOO))) »261.))

(VALUE (PORT OUT (PART AID2 (PART (IUM FA 1.) FOO))) »261.))

(IF (VALUE (PORT III (PART AID2 (PART (IUM FA 1.) FOO))) 0.)

(VALUE (PORT OUT (PART AID2 (PART (IUM FA 1.) FOO))) 0.))

(IF (AID (VALUE (PORT III (PART AID1 (PART (IUM FA 1.) FOO))) 1.)

(VALUE (PORT 112 (PART AID1 (PART (IUM FA 1.) FOO») «268.»

(VALUE (PORT OUT (PART AID1 (PART (IUM FA 1.) FOO))) $258.))

(IF (VALUE (PORT III (PART AID1 (PART (IUM FA 1.) FOO))) 0.)

(VALUE (PORT OUT (PART AID1 (PART (IUM FA 1.) FOO))) 0.))

(IF (AID (VALUE (PORT HI (PART 0R1 (PART (IUM FA 1.) FOO))) 0.)

(VALUE (PORT 112 (PART 0R1 (PART (IUM FA 1.) FOO))) $26S.»

(VALUE (PORT OUT (PART 0R1 (PART (IUM FA 1.) FOO))) ♦2BB.))

(IF (VALUE (PORT III (PART 0R1 (PART (IUM FA 1.) FOO))) 1.)

(VALUE (PORT OUT (PART 0R1 (PART (IUM FA 1.) FOO))) 1.))

(IF (AID (VALUE (PORT III (PART X0R2 (PART (IUM FA 1.) FOO)» 1.)

(VALUE (PORT 112 (PART I0R2 (PART (IUM FA 1.) FOO))) 1.))

(VALUE (PORT OUT (PART X0R2 (PART (IUH FA 1.) FOO))) 0.))

(IF (AID (VALUE (PORT III (PART X0R2 (PART (IUM FA 1.) FOO))) 0.)

(VALUE (PORT 112 (PART X0R2 (PART (IUM FA 1.) FOO))) 1.))

(VALUE (PORT OUT (PART X0R2 (PART (IUM FA 1.) FOO))) 1.))

(IF (AID (VALUE (PORT III (PART X0R2 (PART (IUM FA 1.) FOO») 1.)

(VALUE (PORT 112 (PART X0R2 (PART (IUH FA 1.) FOO))) 0.))

(VALUE (PORT OUT (PART X0R2 (PART (IUM FA 1.) FOO))) 1.))

E.2. ADDER DATABASE 181

(IF (AID (VALUE (PORT Hl (PIKT X0R2 (PAKT (IUH FA 1.) FOO))) 0.)

(V1LUE (POET 112 (PART X0R2 (PART (IUH FA 1.) FOO))) 0.))

(VALUE (PORT OUT (PART X0R2 (PART (IUH FA 1.) FOO))) 0.))

(IF (AID (VALUS (PORT Hl (PART X0R1 (PART (IUH FA 1.) FOO))) 1.)

(VALUE (PORT 112 (PART Z0R1 (PART (IUH FA 1.) FOO))) 1.))

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 1.) FOO))) 0.))

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 1.) FOO))) 0.)

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 1.) FOO))) 1.))

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 1.) FOO))) 1.))

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 1.) FOO))) 1.)

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 1.) FOO))) 0.))

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 1.) FOO))) 1.))

(IF (AID (VALUE (PORT III (PART I0R1 (PART (IUH FA 1.) FOO))) 0.)

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 1.) FOO))) 0.))

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 1.) FOO))) 0.))

(IF (VALUE (PORT OUT (PART AID2 (PART (IUH FA 2.) FOO))) $244.)

(VALUE (PORT III (PART 0R1 (PART (IUH FA 2.) FOO))) »244.))

(IF (VALUE (PORT OUT (PART AID1 (PART (IUH FA 2.) FOO))) «242.)

(VALUE (PORT 112 (PART 0R1 (PART (IUH FA 2.) FOO))) «242.))

(IF (VALUE (PORT OUT (PART X0R1 (PART (IUH FA 2.) FOO))) $240.)

(VALUE (PORT 112 (PART AID2 (PART (IUH FA 2.) FOO))) «240.))

(IF (VALUE (PORT OUT (PART X0R1 (PART (IUH FA 2.) FOO))) $238.)

(VALUE (PORT III (PART X0R2 (PART (IUH FA 2.) FOO))) $238.))

(IF (AID (VALUE (PORT III (PART AID2 (PART (IUH FA 2.) FOO))) 1.)

(VALUE (PORT 112 (PART AID2 (PART (IUH FA 2.) FOO))) »236.))

(VALUE (PORT OUT (PART AID2 (PART (IUH FA 2.) FOO))) «238.))

(IF (VALUE (PORT III (PART AID2 (PART (IUH FA 2.) FOO))) 0.)

182 APPENDIXE. ADDER EXAMPLE

(VALUE (PORT OUT (PART 1ID2 (PART (IUH FA 2.) F00))) 0.))

(IF (AID (VALUE (PORT III (PART AID1 (PART (IUH FA 2.) FOO))) 1.)

(VALUE (PORT 112 (PART AID1 (PART (IUH FA 2.) FOO») »233.))

(VALUE (PORT OUT (PART AID1 (PART (IUH FA 2.) FOO») »233.))

(IF (VALUE (PORT III (PART AIM (PART (IUH FA 2.) FOO))) 0.)

(VALUE (PORT OUT (PART AIDi (PART (IUH FA 2.) FOO))) 0.))

(IF (AID (VALUE (PORT III (PART 0R1 (PART (IUH FA 2.) FOO))) 0.)

(VALUE (PORT 112 (PART 0R1 (PART (IUH FA 2.) FOO))) $230.))

(VALUE (PORT OUT (PART 0R1 (PART (IUH FA 2.) FOO))) $230.))

(IF (VALUE (PORT III (PART 0R1 (PART (IUH FA 2.) FOO))) 1.)

(VALUE (PORT OUT (PART 0R1 (PART (IUH FA 2.) FOO))) 1.))

(IF (AID (VALUE (PORT III (PART X0R2 (PART (IUH FA 2.) FOO))) 1.)

(VALUE (PORT 112 (PART X0R2 (PART (IUH FA 2.) FOO))) 1.))

(VALUE (PORT OUT (PART X0R2 (PART (IUH FA 2.) FOO») 0.))

(IF (AID (VALUE (PORT III (PART X0R2 (PART (IUH FA 2.) FOO))) 0.)

(VALUE (PORT 112 (PART X0R2 (PART (IUH FA 2.) FOO))) 1.))

(VALUE (PORT OUT (PART X0R2 (PART (IUH FA 2.) FOO))) 1.))

(IF (AID (VALUE (PORT III (PART X0R2 (PART (IUH FA 2.) FOO))) 1.)

(VALUE (PORT 112 (PART X0R2 (PART (IUH FA 2.) FOO))) 0.))

(VALUE (PORT OUT (PART I0R2 (PART (IUH FA 2.) FOO))) 1.))

(IF (AID (VALUE (PORT III (PART X0R2 (PART (IUH FA 2.) FOO))) 0.)

(VALUE (PORT 112 (PART X0R2 (PART (IUH FA 2.) FOO))) 0.))

(VALUE (PORT OUT (PART X0R2 (PART (IUH FA 2.) FOO))) 0.))

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 2.) FOO))) 1.)

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 2.) FOO))) 1.))

(VALUE (PORT OUT (PART I0R1 (PART (IUH FA 2.) FOO))) 0.))

(IF (AID (VALUE (PORT III (PART I0R1 (PART (IUH FA 2.) FOO))) 0.)

(VALUE (PORT 112 (PART I0R1 (PART (IUH FA 2.) FOO))) 1.))

E.2. ADDER DATABASE 183

(VALUE (PORT OUT (PART XOR1 (PART (IUH FA 2.) F00))) 1.))

(IF (AID (VALUE (PORT III (PART XOR1 (PART (IUH FA 2.) FOO))) 1.)

(VALUE (PORT I« (PART XOR1 (PART (IUH FA 2.) FOO))) 0.))

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 2.) F00))> 1.))

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 2.) FOO))) 0.)

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 2.) FOO))) 0.))

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 2.) FOO))) 0.))

(IF (VALUE (PORT OUT (PART AID2 (PART (IUH FA 3.) FOO))) $219.)

(VALUE (PORT III (PART 0R1 (PART (IUH FA 3.) FOO))) »219.))

(IF (VALUE (PORT OUT (PART AID1 (PART (IUH FA 3.) FOO))) $217.)

(VALUE (PORT 112 (PART 0R1 (PART (IUH FA 3.) FOO))) $217.))

(IF (VALUE (PORT OUT (PART X0R1 (PART (IUH FA 3.) FOO))) $218.)

(VALUE (PORT 112 (PART AID2 (PART (IUH FA 3.) FOO))) $218.))

(IF (VALUE (PORT OUT (PART X0R1 (PART (IUH FA 3.) FOO))) «213.)

(VALUE (PORT III (PART X0R2 (PART (IUH FA 3.) FOO))) »213.))

(IF (AID (VALUE (PORT III (PART AID2 (PART (IUH FA 3.) FOO))) 1.)

(VALUE (PORT 112 (PART AID2 (PART (IUH FA 3.) FOO))) $211.))

(VALUE (PORT OUT (PART AID2 (PART (IUH FA 3.) FOO))) $211.))

(IF (VALUE (PORT III (PART AID2 (PART (IUH FA 3.) FOO))) 0.)

(VALUE (PORT OUT (PART AID2 (PART (IUH FA 3.) FOO))) 0.))

(IF (AID (VALUE (PORT III (PART AID1 (PART (IUH FA 3.) FOO))) 1.)

(VALUE (PORT 112 (PART AID1 (PART (IUH FA 3.) FOO))) $208.))

(VALUE (PORT OUT (PART AID1 (PART (IUH FA 3.) FOO))) $208.))

(IF (VALUE (PORT III (PART AID1 (PART (IUH FA 3.) FOO))) 0.)

(VALUE (PORT OUT (PART AID1 (PART (IUH FA 3.) FOO))) 0.))

(IF (AID (VALUE (PORT III (PART 0R1 (PART (IUH FA 3.) FOO))) 0.)

(VALUE (PORT 112 (PART 0R1 (PART (IUH FA 3.) FOO))) $206.))

184 APPENDIXE. ADDER EXAMPLE

(VALUE (POM OUT (P1RT OKI (PART (IUH FA 3.) FOO))) «aOB.))

(IF (VALUE (PORT III (PART 0R1 (PART (IUH FA 3.) FOO))) 1.)

(VALUE (PORT OUT (PART OR1 (PART (IUH FA 3.) FOO))) 1.))

(IF (AID (VALUE (PORT III (PART XOR2 (PART (IUH FA 3.) FOO))) 1.)

(VALUE (PORT 112 (PART I0R2 (PART (IUH FA 3.) FOO))) 1.))

(VALUE (PORT OUT (PART X0R2 (PART (IUH FA 3.) FOO))) 0.))

(IF (AID (VALUE (PORT HI (PART X0R2 (PART (IUH FA 3.) FOO))) 0.)

(VALUE (PORT 112 (PART X0R2 (PART (IUH FA 3.) FOO))) 1.))

(VALUE (PORT OUT (PART X0R2 (PART (IUH FA 3.) FOO))) 1.))

(IF (AID (VALUE (PORT III (PART I0R2 (PART (IUH FA 3.) FOO))) 1.)

(VALUE (PORT 112 (PART X0R2 (PART (IUH FA 3.) FOO))) 0.))

(VALUE (PORT OUT (PART I0R2 (PART (IUH FA 3.) FOO))) 1.))

(IF (AID (VALUE (PORT III (PART X0R2 (PART (IUH FA 3.) FOO))) 0.)

(VALUE (PORT 112 (PART I0R2 (PART (IUH FA 3.) FOO))) 0.))

(VALUE (PORT OUT (PART X0R2 (PART (IUH FA 3.) FOO))) 0.))

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 3.) FOO))) 1.)

(VALUE (PORT 112 (PART I0R1 (PART (IUH FA 3.) FOO))) 1.))

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 3.) FOO))) 0.))

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 3.) FOO))) 0.)

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 3.) FOO))) 1.))

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 3.) FOO))) 1.))

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 3.) FOO))) 1.)

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 3.) FOO))) 0.))

(VALUE (PORT OUT (PART I0R1 (PART (IUH FA 3.) FOO))) 1.))

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 3.) FOO))) 0.)

(VALUE (PORT I« (PART X0R1 (PART (IUH FA 3.) FOO))) 0.))

(VALUE (PORT OUT (PART I0R1 (PART (IUH FA 3.) FOO))) 0.))

(If (VALUE (PORT OUT (PART AID2 (PART (IUH FA 4.) FOO))) «194.)

E.2. ADDER DATABASE 185

(VALUB (PORT III (PIKT OR1 (PART (IUH FA 4.) TOO))) »194.))

(IP (VALUB (PORT OUT (PART AID1 (PART (IUH FA 4.) FOO))) »192.)

(VALUE (PORT 112 (PART OR1 (PART (IUH FA 4.) FOO)» $192.))

(IF (VALUB (PORT OUT (PART XOR1 (PART (IUH FA 4.) FOO))) «190.)

(VALUB (PORT 113 (PART AID3 (PART (IUH FA 4.) FOO))) »190.))

(IF (VALUB (PORT OUT (PART X0R1 (PART (IUH FA 4.) FOO))) $188.)

(VALUB (PORT III (PART X0R2 (PART (IUH FA 4.) FOO))) «188.»

(IF (AID (VALUE (PORT III (PART AID2 (PART (IUH FA 4.) FOO))) 1.)

(VALUE (PORT 112 (PART AID2 (PART (IUH FA 4.) FOO))) $186.))

(VALUE (PORT OUT (PART AID2 (PART (IUH FA 4.) FOO))) »188.))

(IF (VALUB (PORT III (PART AID2 (PART (IUH FA 4.) FOO))) 0.)

(VALUB (PORT OUT (PART AID2 (PART (IUH FA 4.) FOO))) 0.))

(IF (AID (VALUE (PORT Hl (PART AID1 (PART (IUH FA 4.) FOO))) 1.)

(VALUE (PORT 112 (PART AID1 (PART (IUH FA 4.) FOO))) »183.))

(VALUB (PORT OUT (PART AID1 (PART (IUH FA 4.) FOO))) »183.))

(IF (VALUB (PORT III (PART AID1 (PART (IUH FA 4.) FOO))) 0.)

(VALUE (PORT OUT (PART AID1 (PART (IUH FA 4.) FOO))) 0.))

(IF (AID (VALUE (PORT III (PART 0R1 (PART (IUH FA 4.) FOO))) 0.)

(VALUB (PORT 112 (PART 0R1 (PART (IUH FA 4.) FOO))) »180.))

(VALUB (PORT OUT (PART 0R1 (PART (IUH FA 4.) FOO))) »180.))

(IF (VALUB (PORT III (PART 0R1 (PART (IUH FA 4.) FOO))) 1.)

(VALUB (PORT OUT (PART 0R1 (PART (IUH FA 4.) FOO))) 1.))

(IF (AID (VALUB (PORT III (PART X0R2 (PART (IUH FA 4.) FOO))) 1.)

(VALUB (PORT 112 (PART X0R2 (PART (IUH FA 4.) FOO))) 1.))

(VALUE (PORT OUT (PART X0R2 (PART (IUH FA 4.) FOO))) 0.))

(IF (AID (VALUE (PORT III (PART X0R2 (PART (IUH FA 4.) FOO))) 0.)

(VALUE (PORT 112 (PART X0R2 (PART (IUH FA 4.) FOO))) 1.))

APPENDIXE. ADDER EXAMPLE
lob

(VALUE (PORT OUT (PART X0R2 (PART (IUH FA 4.) FOO))) 1.))

(IF (AID (VALUE (PORT Ml (PART X0R2 (PART (IUH FA 4.) FOO») 1.)

(VALUE (PORT 112 (PART I0R2 (PART (IUH FA 4.) FOO))) 0.))

(VALUE (PORT OUT (PART I0R2 (PART (IUH FA 4.) FOO))) 1.))

(IF (AID (VALUE (PORT III (PART I0R2 (PART (IUH FA 4.) FOO))) 0.)

(VALUE (PORT 112 (PART X0R2 (PART (IUH FA 4.) FOO))) 0.))

(VALUE (PORT OUT (PART I0R2 (PART (IUH FA 4.) FOO))) 0.))

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 4.) FOO))) 1.)

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 4.) FOO))) 1.))

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 4.) FOO))) 0.))

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 4.) FOO))) 0.)

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 4.) FOO))) 1.»

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 4.) FOO))) 1.»

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 4.) FOO))) 1.)

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 4.) FOO))) 0.))

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 4.) FOO))) 1.))

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 4.) FOO))) 0.)

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 4.) FOO))) 0.))

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 4.) FOO))) 0.))

E.2.2 Adder Database at Compile-Time

The rules axe the same as the rules in the run-time database and will not be repeated

here. The facts are written in a different fashion and these are given below.

;!;;;;;;;;;;;sw»;;;s;»s« ;;;;;;;;;;;;-ü- '

;;; External input» at eoopil»-tim«

(fact (VALUE (PORT III (PART (IUH FA 1.) FOO)) *x) ($x) 1)

(fact (VALUE (PORT III (PART (IUH FA 2.) FOO)) *x) (**) 1)

E.3. GOAL

(fact (VALUE (POET III (PAW (IUH FA 3.) FOO)> *x) (*x) 1)

(fact (VALUE (POM III (PART (IUH FA 4.) FOO)) $x) (tx) 1)

(fact (VALUE (PORT ZI2 (PART (IUH FA 1.) FOO)) *x) ($x) 1)

(fact (VALUE (PORT 112 (PART (IUH FA 2.) FOO)) *x) (tx) 1)

(fact (VALUE (PORT 112 (PART (IUH FA 3.) FOO)) tx) (tx) 1)

(fact (VALUE (PORT 112 (PART (IUH FA 4.) FOO)) tx) (tx) 1)

(fact (VALUE (PORT CII (PART (IUH FA 1.) FOO)) tx) ($x) 1)

187

;;; End of «xtarnal inputs

;!!;i!!!!;if!5i!!iJ!i»!!iii!!!!!!!!!i!ii

E.3 Goal

E.3.1 Goal at Run-Time

The goal is to determine the value of the "COUT" port of the fourth full-adder

in the top-level device "FOO". The fourth full-adder is associated with the highest

order bit. The goal is given below.

(VALUE (PORT COUT (PART (NUM FA 4) FOO)) $X)

E.3.2 Goal at Compile-Time

The syntax for goals at compile-time is similar to that for facts at compile-time.

"GOAL" is the predicate as opposed to "FACT". The first term is the fact and

the next two terms are the list of unknown constants and the number of goals

respectively. The goal is shown below.

(GOAL (VALUE (PORT COUT (PART (NUM FA 4.) FOO)) $X) NIL 1.)

188 APPENDIXE. ADDER EXAMPLE

E.4 Domain Information

The cardinalities of the domains of all variables is 2 because variables can be bound

to either 0 or 1.

E.5 Partitioning Database

In this database, a fact of the form

(PARTITION <FACT-PATTERN>)

indicates that all facts that match the fact pattern <FACT-PATTERN> or all rules

whose consequents (or heads) match the fact pattern are included in one partition.

Variables are now all symbols that begin with "&". The notation for variables

is different here because there are two types of variables in MRS. Variables that

begin with "$" are base-level variables and variables that begin with "&" are meta-

level variables. The base-level database describes the application of interest and

the meta-level describes information about the base-level. The distinction is not

terribly important here except that the partitioning database is better thought of

as containing meta-level information. The partitioning database is shown below.

(PARTITIOI (V1LUE (PORT III (PART (IUH FA 1) F00)) «))

(PARTITIOI (VALUE (PORT III (PART «UH FA 2) F00)) M))

(PARTITIOI (VAtUB (PORT III (PART (IUH FA 3) FOO)) «))

(PARTITIOI (VALUE (PORT III (PART (IUH FA 4) FOO» «))

(PARTITIOI (VALUE (PORT 112 (PART (IUU FA 1) FOO)) «))

(PARTITIOI (VALUE (PORT 112 (PART (IUH FA 2) FOO)) *D)

(PARTITIOI (VALUE (PORT 112 (PART (IUH FA 3) FOO)) «))

(PARTITIOI (VALUE (PORT 112 (PART (IUH FA 4) FOO)) «))

(PARTITIOI (VALUE (PORT CII (PART (IUH FA 1) FOO)) *X»

(PARTITIOI (VALUE (PORT COUT (PART (IUH FA 1) FOO)) «))

(PARTITIOI (VALUE (PORT COUT (PART (IUH FA 2) FOO)) *X»

(PARTITIOI (VALUE (PORT COUT (PART (IUH FA 3) FOO)) «))

(PARTITIOI (VALUE (PORT COUT (PART (IUH FA 4) FOO)) tt»

(PARTITIOI (VALUE (PORT SUH (PART (IUH FA 1) FOO)) «))

(PARTITIOI (VALUE (PORT SUH (PART (IUH FA 2) FOO)) «))

E.5. PARTITIONING DATABASE

(PARTITIOI (VALUE (PORT SUH (PART HUM FA 3) FOO)) AD)

(PARTITIOI (VALUE (PORT SUH (PART (IUH FA 4) FOO)) AZ))

(PARTITIOI (VALUE (PORT III (PART AIDS (PART (IUH FA 1) FOO))) AT))

(PARTITIOI (VALUE (PORT III (PART AID2 (PART (IUH FA 2) FOO))) AZ))

(PARTITIOI (VALUE (PORT III (PART AID2 (PART (IUH FA 3) FOO))) AD)

(PARTITIOI (VALUE (PORT III (PART AID2 (PART (IUH FA 4) FOO))) AD)

(PARTITIOI (VALUE (PORT 112 (PART Z0R2 (PART (IUH FA 1) FOO))) AX))

(PARTITIOI (VALUE (PORT I» (PART ZOR2 (PART (IUH FA 2) FOO))) AZ))

(PARTITIOI (VALUE (PORT 112 (PART Z0R2 (PART (IUH FA 3) FOO))) AD)

189

(PARTITIOI (VALUE (PORT 112 (PART IOR2 (PART (IUH FA 4) FOO))) AZ))

(PARTITIOI (VALUE (PORT 112 (PART AIM (PART (IUH FA 1) FOO))) AI))

(PARTITIOI (VALUE (PORT 112 (PART AIM (PART (IUH FA 2) FOO))) AZ))

(PARTITIOI (VALUE (PORT 112 (PART AID1 (PART (IUH FA 3) FOO))) AI))

(PARTITIOI (VALUE (PORT 112 (PART AID1 (PART (IUH FA 4) FOO))) AI))

(PARTITIOI (VALUE (PORT 112 (PART IOR1 (PART (IUH FA 1) FOO))) AZ))

(PARTITIOI (VALUE (PORT 112 (PART ZOR1 (PART (IUH FA 2) FOO))) AZ))

(PARTITIOI (VALUE (PORT 112 (PART ZOR1 (PART (IUH FA 3) FOO))) AZ))

(PARTITIOI (VALUE (PORT 112 (PART IOR1 (PART (IUH FA 4) FOO))) AZ))

(PARTITIOI (VALUE (PORT III (PART AID1 (PART (IUH FA 1) FOO))) AZ))

(PARTITIOI (VALUE (PORT III (PART AID1 (PART (IUH FA 2) FOO))) AI))

(PARTITIOI (VALUE (PORT III (PART AID1 (PART (IUH FA 3) FOO))) AI))

(PARTITIOI (VALUE (PORT III (PART AID1 (PART (IUH FA 4) FOO))) AI))

(PARTITIOI (VALUE (PORT III (PART XOR1 (PART (IUH FA 1) FOO))) AZ))

(PARTITIOI (VALUE (PORT III (PART ZOR1 (PART (IUH FA 2) FOO))) AZ))

(PARTITIOI (VALUE (PORT III (PART IOR1 (PART (IUH FA 3) FOO))) AI))

(PARTITIOI (VALUE (PORT III (PART ZOR1 (PART (IUH FA 4) FOO))) AZ))

(PARTITIOI (VALUE (PORT CII (PART (IUH FA 2) FOO)) AD)

(PARTITIOI (VALUE (PORT CII (PART (IUH FA 3) FOO)) AD)

(PARTITIOI (VALUE (PORT CII (PART (IUH FA 4) FOO)) AD)

(PARTITIOI (VALUE (PORT III (PART OR1 (PART (IUH FA 1) FOO))) AD)

(PARTITIOI (VALUE (PORT 112 (PART OR1 (PART (IUH FA 1) FOO))) AD)

(PARTITIOI (VALUE (PORT 112 (PART AID2 (PART (IUH FA 1) FOO))) AD)

(PARTITIOI (VALUE (PORT III (PART X0R2 (PART (IUH FA 1) FOO))) AD)

(PARTITIOI (VALUE (PORT OUT (PART AID2 (PART (IUH FA 1) FOO))) AD)

(PARTITIOI (VALUE (PORT OUT (PART AID1 (PART (IUH FA 1) FOO))) AD)

(PARTITIOI (VALUE (PORT OUT (PART OR1 (PART (IUH FA 1) FOO))) AD)

(PARTITIOI (VALUE (PORT OUT (PART I0R2 (PART (IUH FA 1) FOO))) AD)

(PARTITIOI (VALUE (PORT OUT (PART ZOR1 (PART (IUH FA 1) FOO))) AZ))

190 APPENDIXE. ADDER EXAMPLE

(PARTITIOI (VALUE (PORT III (PUT 0R1 (PART (TOM Fi 2) F00))) «))

(PiRTITIOI (VALUE (PORT 112 (PiRT OR1 (PART (TOM Fi 2) FOO))> «»

(PIRTITIOI (VALUE (PORT 112 (PART AID2 (PART (TOM FA 2) F00)>> «))

(PARTITIOI (VALUE (PORT III (PART X0R2 (PART (TOM FA 2) FOO))) tX»

(PARTITIOI (VALUE (PORT OUT (PART AID2 (PART (TOM FA 2) FOO))) «))

(PARTITIOI (VALUE (PORT OUT (PART AID1 (PART (TOM FA 2) FOO))) «))

(PARTITIOI (VALUE (PORT OUT (PART OR1 (PART (TOM FA 2) FOO))) «))

(PARTITIOI (VALUE (POST OUT (PART X0R2 (PART (TOM FA 2) FOO))) «))

(PARTITIOI (VALUE (PORT OUT (PART XOR1 (PART (TOM FA 2) FOO))) *X»

(PARTITIOI (VALUE (PORT III (PART OR1 (PART (TOM FA 3) FOO))) »X))

(PARTITIOI (VALUE (PORT 112 (PART OR1 (PART (TOM FA 3) FOO))) «))

(PARTITIOI (VALUE (PORT 112 (PART AID2 (PART (TOM FA 3) FOO))) »X»

(PARTITIOI (VALUE (PORT III (PART X0R2 (PART (TOM FA 3) FOO))) *«)

(PARTITIOI (VALUE (PORT OUT (PART AID2 (PART (TOM FA 3) FOO))) «))

(PARTITIOI (VALUE (PORT OUT (PART AID1 (PART (TOM FA 3) FOO))) «))

(PARTITIOI (VALUE (PORT OUT (PART OR1 (PART (TOM FA 3) FOO))) «))

(PARTITIOI (VALUE (PORT OUT (PART X0R2 (PART (TOM FA 3) FOO))) *X))

(PARTITIOI (VALUE (PORT OUT (PART IOR1 (PART (TOM FA 3) FOO))) «))

(PARTITIOI (VALUE (PORT III (PART OR1 (PART (TOM FA 4) FOO))) «))

(PARTITIOI (VALUE (PORT 112 (PART OR1 (PART (TOM FA 4) FOO))) «))

(PARTITIOI (VALUE (PORT 112 (PART AID2 (PART (TOM FA 4) FOO))) «))

(PARTITIOI (VALUE (PORT III (PART X0R2 (PART (TOM FA 4) FOO))) «))

(PARTITIOI (VALUE (PORT OUT (PART AID2 (PART (TOM FA 4) FOO))) «))

(PARTITIOI (VALUE (PORT OUT (PART AID1 (PART (TOM FA 4) FOO))) «))

(PARTITIOI (VALUE (PORT OUT (PART OR1 (PART (TOM FA 4) FOO))) *X))

(PARTITIOI (VALUE (PORT OUT (PART IOR2 (PART (TOM FA 4) FOO))) *D)

(PARTITIOI (VALUE (PORT OUT (PART XOR1 (PART (TOM FA 4) FOO))) *X))

E.6 Multiprocessor Characteristics

E.6.1 Size of Multiprocessor

First, the number of processors used in the experiment was 61. This corresponds to

an E-size of 5 (i.e., there are 5 processors on each side of the hexagonal surface). The

E.6. MULTIPROCESSOR CHARACTERISTICS 191

• 4

Figure 42: E-5 Processing Surface for FAIM-1

processors along with their processor addresses are shown in figure E.6.1. Wrap-

around connections from the edges of the boundary are not shown in the figure for

the sake of simplicity.

E.6.2 Processing Parameters

For the cost model described in chapter 3, the only constant given a non-zero value

is Ku—the time taken to perform a successful unification. This constant is given

the value 50 microseconds based on an estimate of 20 KLIPS for each processor.

192 APPENDIXE. ADDER EXAMPLE

E.6.3 Communication Parameters

The constants KUK2, and K3 used in the definition of the communication cost

function (see chapter 3) have the values given below.

K\ = 2 microseconds

K2 = 2 microseconds/packet

K3 = 1 microseconds/hop

All messages are assumed to fit in one packet.

E.7 Allocation Database

E.7.1 Allocation Database for Single Copy Case

In this database, facts of the form
(LOC <FACT-PATTERN> <PROCESSOR-ADDRESS>)

are intended to mean that the partition specified by

(PARTITION <FACT-PATTERN>)
should be allocated to the processor with the address PROCESSOR-ADDRESS>.

The database is shown below.

(LOC (VALUE (PORT III (PART (TOM Fi 1.) F00)) AX) (3. 7.))

(LOC (VALUE (PORT III (PUT (TOM Fl J.) F00>> AX) (2- 4.))

(LOC (VALUB (PORT III (PART (TOM Fi 3.) F00)) AX) (2. 8.))

(LOC (VALUE (PORT III (PART (IUH FA 4.) F00» AX) (6. 4.))

(LOC (VALUE (PORT H2 (PART (TOM FA 1.) F00)> AX) («• 2.))

(LOC (VALUE (PORT 112 (PART «UK FA 2.) F00)) AX) (B. 6.))

(LOC (VALUB (PORT H2 (PART (TOM FA 3.) F00)> AT) (3. 2.»

(LOC (VALUB (PORT 112 (PART (TOM FA 4.) F00» AX) (1. 2.))

(LOC (VALUE (PORT CXI (PART (IUH FA 1.) F00)> «) (3. 6.))

(LOC (VALUE (PORT COUT (PART (TOM FA 1.) F00» AX) (8. 8.))

(LOC (VALUB (PORT COUT (PART (TOM FA 2.) F00)) AX) («• 2.))

(LOC (V1LUE (PORT COUT (PART (TOM FA 3.) F00)) AX) (0. 0.))

(LOC (VALUB (PORT COUT (PART (TOM FA 4.) FOO)) »X) (4. 4.))

(LOC (VALUB (PORT SUM (PART (TOM FA 1.) FOO)) AI) lit)

E.7. ALLOCATION DATABASE 1<

(LOC (VALUE (PORT SUH (PART (IUH FA 2.) FOO)) AX) ■XL)

(LOC (VALUE .PORT SUM (PART (IUH FA 3.) FOO)) AX) IIL)

(LOC (VALUE (PORT SUE (PART (IUH FA 4.) FOO)) AX) IIL)

(LOC (VALUE (PORT III (PART AID2 (PART (IUH FA 1.) FOO)))
AX) (3. 6.))

(LOC (VALUE (PORT III (PART AID2 (PART (IUH FA 2.) FOO))) AX)
(6. 7.))

(LOC (VALUE (PORT III (PART AID2 (PART (IUH FA 3.) FOO)))
AX) (4. 1.))

(LOC (VALUE (PORT III (PART AIDS (PART (IUH FA 4.) FOO)))
AX) (7. 4.))

(LOC (VALUE (PORT na (PART X0R2 (PART (IUH FA 1.) FOO))) AX) IIL)

(LOC (VALUE (PORT 112 (PART XOR2 (PART (IUH FA 2.) FOO)))
AX) ■XL)

(LOC (VALUE (PORT H2 (PART X0R2 (PART (IUH FA 3.) FOO)))
AX) IIL)

(LOC (VALUE (PORT 112 (PART X0R2 (PART (IUH FA 4.) FOO)))
AX) ■XL'

(LOC (VALUE (PORT 112 (PART AID1 (PART (IUH FA 1.) FOO)))
AX) (8. 2.))

(LOC (VALUE (PORT 112 (PART AID1 (PART (IUH FA 2.) FOO)))
AX) (4. B.))

(LOC (VALUE (PORT 112 (PART AID1 (PART (IUH FA 3) FOO))) AX) (3. 1.))

(LOC (VALUE (PORT 112 (PART AID1 (PART (IUH FA 4) FOO))) AX) (4. 4.))

(LOC (VALUE (PORT 112 (PART XOR1 (PART (IUH FA 1) FOO))) AX) (6. 2.))

(LOC (VALUE (PORT 112 (PART XOR1 (PART (IUH FA 2) FOO))) AX) (7. 8.))

(LOC (VALUE (PORT 112 (PART XOR1 (PART (IUH FA 3) FOO))) AX) (S. 1.))

(LOC (VALUE (PORT 112 (PART XOR1 (PART (IUH FA 4 .) FOO)))
AX) (0. 2.))

(LOC (VALUE (PORT III (PART AIM (PART (IUH FA 1 .) FOO)))
AX) (2. 8.))

(LOC (VALUE (PORT III (PART AID1 (PART (IUH FA 2 .) FOO))) AX) (3. 5.))

(LOC (VALUE (PORT III (PART AID1 (PART (IUH FA 3 .) FOO)))
AX) (4. 2.))

(LOC (VALUE (PORT III (PART AID1 (PART (IUH FA 4 .) FOO)))
AX) (6. 4.))

(LOC (VALUE (PORT III (PART XOR1 (PART (IUH FA 1 .) FOO)))
AX) (3. 6.))

(LOC (VALUE (PORT III (PART XOR1 (PART (IUH FA 2 .) FOO))) AX) (6. 5.))

(LOC (VALUE (PORT III (PART XOR1 (PART (IUH FA 3 .) FOO)))
AX) (2. 6.))

(LOC (VALUE (PORT III (PART XOR1 (PART (IUH FA 4 .) FOO)))
AX) (0. 3.))

(LOC (VALUE (PORT CII (PART (IUH FA 2.) FOO)) AX) (7. 7.))

(LOC (VALUE (PORT CII (PART (IUH FA 3.) FOO)) »X) (6. 2.))

(LOC (VALUE (PORT CII (PART (IUH FA 4.) FOO)) AX) (8. 4.))

(LOC (VALUE (PORT III (PART OR1 (PART (IUH FA 1.) FOO)))
AX) (1. 6.))

(LOC (VALUE (PORT 112 (PART OR1 (PART (IUH FA 1.) FOO)))
AX) (4. 0.))

(LOC (VALUE (PORT 112 (PART AIDS (PARI (IUH FA 1 .) FOO))) AX) (2 6.))

(LOC (VALUE (PORT III (PART XOR3 (PARI (IUH FA 1 .) FOO))] AX) IIL)

(LOC (VALUE (PORT OU1 ■ (PART AID: 1 (PARI ' (IUH FA 1 .) FOO))) AX) (2 . 6.))

(LOC (VALUI (PORT OUT (PART AID1 L (PART (IUH FA 1 L.) FOO))) AX' (6 . 1.))

(LOC : (VALUI ! (PORT OUT (PART OR1 (PART (IUH FA 1) FOO))) AX) (4. 0.))

(LOC (VALUE (PORT OUT (PART X0R2 (PART (IUH FA L.) FOO))) AX) IIL)

194 APPENDIXE. ADDER EXAMPLE

(LOC (VALUE (PORT OUT (PIKT I0R1 (PART (IUM PA 1.) FOO))) AX) (3. 6.))

CLOC (VALUE (PORT Ml (PART OR1 (PART (IUM FA 2.) FOO))) «1) (4. 7.))

(LOC (VALUE (PORT 112 (PART OR1 (PART (IUK FA 2.) FOO))) AX) (3. 6.))

(LOC (VALUE (PORT 112 (PART AID2 (PART (IUM FA 2.) FOO))) AX) (6. 8.))

(LOC (VALUE (PORT III (PART I0R2 (PART (IUM FA 2.) FOO)» AX) IIL)

(LOC (VALUE (PORT OUT (PART AID2 (PART (IUM FA 2.) FOO))) AX) (6. 7.))

(LOC (VALUE (PORT OUT (PART AIM (PART (IUM FA 2.) FOO))) AX) (4. 6.))

(LOC (VALUE (PORT OUT (PART OR1 (PART (IUM FA 2.) FOO))) AX) (3. 7.))

(LOC (VALUE (PORT OUT (PART X0R2 (PART (IUM FA 2.) FOO))) AX) IIL)

(LOC (VALUE (PORT OUT (PART XOR1 (PART (IUM FA 2.) FOO))) AX) (8. 6.))

(LOC (VALUE (PORT III (PART OR1 (PART (IUM FA 3.) FOO))) AX) (2. 0.))

(LOC (VALUE (PORT 112 (PART 0R1 (PART (IUM FA 3.) FOO))) AX) (2. 1.))

(LOC (VALUE (PORT 112 (PART AID2 (PART (IUM FA 3.) FOO))) AX) (4. 0.))

(LOC (VALUE (PORT III (PART I0R2 (PART (IUM FA 3.) FOO))) AX) IIL)

(LOC (VALUE (PORT OUT (PART AID2 (PART (IUM FA 3.) FOO))) AX) (3. 0.))

(LOC (VALUE (PORT OUT (PART AID1 (PART (IUM FA 3.) FOO))) AX) (3. 2.))

(LOC (VALUE (PORT OUT (PART 0R1 (PART (IUM FA 3.) FOO))) AX) (1. 0.))

(LOC (VALUE (PORT OUT (PART X0R2 (PART (IUM FA 3.) FOO))) AX) IIL)

(LOC (VALUE (PORT OUT (PART X0R1 (PART (IUM FA 3.) FOO))) AX) (1. 6.))

(LOC (VALUE (PORT III (PART 0R1 (PART (IUM FA 4.) FOO))) AX) (6. 4.))

(LOC (VALUE (PORT 112 (PART 0R1 (PART (IUM FA 4.) FOO))) AX) (4. 4.))

(LOC (VALUE (PORT 112 (PART AID2 (PART (IUM FA 4.) FOO))) AX) (7. 6.))

(LOC (VALUE (PORT III (PART X0R2 (PART (IUM FA 4.) FOO))) AX) IIL)

(LOC (VALUE (PORT OUT (PART AID2 (PART (IUM FA 4.) FOO))) AX) (6. 4.))

(LOC (VALUE (PORT OUT (PART AID1 (PART (IUM FA 4.) FOO))) AX) (4. 4.))

(LOC (VALUE (PORT OUT (PART 0R1 (PART (IUM FA 4.) FOO))) AX) (4. 4.))

(LOC (VALUE (PORT OUT (PART X0R2 (PART (IUM FA 4.) FOO))) AX) IIL)

(LOC (VALUE (PORT OUT (PART X0R1 (PART (IUM FA 4.) FOO))) AX) (8. 6.))

E.7.2 Allocation Database for Multiple Copy Case

In this database, facts of the form

(LOC <FACT-PATTERN> <CLUSTER>)

are intended to mean that the partition specified by

(PARTITION <FACT-PATTERN>)
should be allocated to the cluster of processors <CLUSTER>. A cluster specified

E.7. ALLOCATION DATABASE 195

as (<n> PAl (<PA1> <PA2>.. .<PAn>) denotes <n> processors with the ad-

dresses <PA1>, <PA2>,...,<PAn>. PAl is the central processor in this cluster

of processors. A cluster specified by nil indicates that no processors belong to the

cluster (i.e., the related partition is not allocated to any processor). This is reason-

able if the partition is not used at all for proving the goals specified at compile-time.

The location database is given below.

OOC (VALUE (POET III (PAKT (WH FA 1.) FOO)) IX) (19. (4. 1.) ((1. S.) (0. 4.) (8. 8.) (7. 8.) (2. 0.)

(2. 1.) (3. 2.) (4. 3.) (B. 3.) (8. 3.) (6. 2.) (2. 8.) (4. 0.) (3. 0.) (3. 1.) (4. 2.) (B. 2.) (B. 1.)

(4. 1.)»)

(LOC (VALUE (POET III (PAET (IUH FA 2.) FOO» «> (T. (2. 3.) ((2. 2.) (1. 2.) (1. 3.) (2. 4.) (3. 4.) (3.

3.) (2. 3.))))

(LOC (VALUE (POET III (PAET (IUH FA 3.) POO» tZ) (7. (2. 4.) ((2. 3.) (1. 3.) (1. 4.) (2. B.) (3. B.) (3.

4.) (2. 4.))))

(LOC (VALUE (POET I« (PAET (IUH FA 4.) F00» AX) (7. (4. 3.) ((4. 2.) (3. 2.) (3. 3.) (4. 4.) (B. 4.) (5.

3.) (4. 3.)»)

(LOC (VALUE (POET 112 (PAET (IUH FA 1.) F00» AX) (19. (0. 0.) ((8. 8.) (B. 7.) (4. 7.) (3. 7.) (7. 3.)

<7. 4.) (8. B.) (0. 2.) (1. 2.) (2. 2.) (2. 1.) (2. 0.) (B. 8.) (4. 8.) (8. 4.) (0. 1.) (1. 1.) (1. 0.)

(0. 0.))))

(LOC (VALUE (POET 112 (PAET «UK FA 2.) F00» tX> (7. (4. 2.) ((4. 1.) (3. 1.) (3. 2.) (4. 3.) (B. 3.) (5.

2.) (4. 2.)»)

(LOC (VALUE (POET 112 (PAET (IUH FA 3.) F00» Al) (7. (7. 7.) ((7. 6.) (8. 8.) (8. 7.) (7. 8.) (8. 8.) (8.

7.) (7. 7.))))

(LOC (VALUE (POET 112 (PAET (IUH FA 4.) FOO» AX) (7. (3. B.) ((3. 4.) (2. 4.) (2. B.) (3. 8.) (4. 8.) (4.

B.) (3. 6.)»)

(LOC (VALUE (POET CII (PAET (IUH FA 1.) FOO» AI) (19. (8. 4.) («. 8.) (4. 7.) (3. 7.) (6. 2.) (6. 3.)

(8. 4.) (7. B.) (8. 6.) (0. 2.) (1. 2.) (1. 1.) Cl. 0.) (4. 8.) (7. 3.) (7. 4.) (8. B.) (0. 1.) (0. 0.)

(8. 4.))))

(LOC (VALUE (POET COUT (PAET (IUH FA 1.) FOO)) tl) (7. (7. 7.) ((7. 6.) (6. 8.) (6. 7.) (7. 8.) (8. 8.)

(8. 7.) (7. 7.))))

(LOC (VALUE (POET COUT (PAET (IUH FA 2.) FOO)) M) (7. (B. 4.) ((B. 3.) (4. 3.) (4. 4.) (B. B.) (6. B.)

(8. 4.) (B. 4.))))

(LOC (VALUE (POET COUT (PAET (IUH FA 3.) FOO)) *X) (1. (B. B.) ((B. B.))))

(LOC (VALUE (POET COOT (PAET (IUH FA 4.) FOO)) AX) (1. (4. 4.) ((4. 4.))))

(LOC (VALUE (POET SUH (PAET (IUH FA 1.) FOO)) kl) IIL)

(LOC (VALUE (POET SUH (PAET (IUH FA 2.) FOO)) AX) IIL)

(LOC (VALUE (POET SUH (PAET (IUH FA 3.) FOO)) AX) IIL)

196 APPENDIXE. ADDER EXAMPLE

(LOC (VALOT (PORT SOT (PAKT (IOT FA 4.) FOO)> AX) «IL>

(LOC (VALOT (PORT III (PART A.D2 (PART W» Fi 1.) FOO))) AX) (19. (8. 4.) ((S. 8.) (4. 7.) (3. 7.) (6.

a.) (6. 3.) (6. 4.) (7. S.) (8. 6.) (0. 2.) (1. 2.) (1. 1.) d- 0.) (4. 8.) (7. 3.) (7. 4.) (8. 5.) (0.

1.) (0. 0.) (8. 4.))))

(LOC (VALOT (PORT 1.1 (PART AIM (PART (1. FA 1.) rOO») AX) (7. (S. I.) («• 4.) (4. 4.) (4. B.) (i. 6.)

(6. «•) (8. 6.) (5. 5.))»
(LOC (VALOT (PORT HI (PART AIDS (PART (IOT FA 3.) FOO))) AD (7. (2. 4.) ((2. 3.) (1. 3.) (1. 4.) (2. B.)

(3. 6.) (3. 4.) (2. 4.))))

(LOC (VALOT (PORT HI (PART AID2 (PART (mm FA 4.) FOO))) AX) (1. (4. 5.) ((4. S.)»>

(LOC (VALOT (PORT 112 (PART X0R2 (PART (ROT FA 1.) FOO))) tX) «L)

(LOC (VALOT (PORT 112 (PUT X0R2 (PART (IOT FA 2.) FOO))) tt) IXL)

(LOC (VALOT (PORT 112 (PART X0R2 (PART (IOT FA 3.) FOO))) «X) 1IL)

(LOC (VALOT (PORT 112 (PART X0R2 (PART (IOT FA 4.) FOO))) AX) lit)

(LOC (VALOT (PORT 1.2 (PART AH.1 (PART (IOT FA 1.) FOO))) AX) (7. (0. 0.) ((5. 8.) (4. 8.) (8. 4.) (0. 1.)

(1. 1.) (1. 0.) (0. 0.))))
(LOC (VALOT (PORT 1.2 (PART A.D1 (PART (IOT FA 2.) FOO))) AX) (7. (4. 2.) ((4. 1.) (3. 1.) (3. 2.) (4. 3.)

(S. 3.) (B. 2.) (4. 2.))))

(LOC (VALOT (PORT «2 (PART AID1 (PART (IOT FA 3.) FOO))) AX) (1. (3. 3.) ((3. 3.))))

(LOC (VALOT (PORT H2 (PART AID! (PART (IOT FA 4.) FOO))) AX) (1. (6. 4.) CCB. 4.))))

(LOC (VALOT (PORT H2 (PART X0R1 (PART (IOT FA 1.) FOO))) AX) (19. (4. B.) ((.. 4.) (4. 3.) (3. 3.) (2.

3.) (2. 4.) (2. B.) (3. ..) (4. 7.) (.. 7.) (6. 7.) (6. 8.) (8. B.) (4. 4.) (3. 4.) (3. B.) (4. 8.) (S.

6) (6. B.) (4. 6.))))
(LOC (VALOT (PORT 1.2 (PART X0R1 (PART (IOT FA 2.) FOO))) AX) (7. (1. S.) <(1. 4.) (0. 4.) (4. 0.) (B. 1.)

(2 8.) (2. B.) (1. B.))))
(LOC (VALOT (PORT H2 (PART X0R1 (PART 0« FA 3.) FOO))) AX) (7. (7. 7.) ((7. 8.) (8. 8.) (8. 7.) (7. 8.)

(8. 8.) (8. 7.) (7. 7.))))

(LOC (VALOT (PORT 1.2 (PART X0R1 (PART (*. FA 4.) FOO))) AX) (1. (3. B.) ((3. ..»)>

1., (2. 3.) (2. 4.) (3. S.) (4. 8.) (B. 8.) (8. 8.) (.....) (8. 4.) (4. 3.) (3. 3.) (3. 4.) (4. B.) (B.

(LOC^VALOT TPORT'H^PART A.D1 (PART (IOT FA 2.) FOO))) AX) (7. (2. 3.) ((2. 2.) (1. 2.) (1. 3.) (2. 4.)

(3 4) (3. 3.) (2. 3.))))

(3. 6.) (3. *•) «• «•»»

ttoc mn CPO.T i« (PUT im cm» <- » «•> "»'» »> «• "• 3'' "*• 3>>>> ,,..,„

„ .«. am, - <~> _ am m. » ..> "°»> « «•■ «• ••> «'• ••> «■ " ' ' '

... «,. o., «. ... «• >•> «■ •■> «• »•> <«■ ■•' «■ " «• '■' "■ "•' °- *•' "• '■' "• *•'

2.) (6. 1.) (4. 1.))»

E.7. ALLOCATION DATABASE 197

ooc (VALUE (PORT m (PUT XORI (PAW am FA a.) roo») t» (7. (7. 4.) ((7. 3.) (e. 3.) (8. 4.) (7. 5.)

(8. 6.) (8. 4.) (7. 4.))))

OOC (VALUE (PORT I« (PIKT XORI (PUT (IUH FA 3.) POO))) »X) (7. (4. 8.) «4. 8.) (3. S.) (3. 6.) (4. 7.)

(B. 7.) (6. 6.) (4. 8.))))

OOC (VALUE (POET 111 (PART X0R1 (PART (IUH FA 4.) FOO))) ft» (1. (a. 3.) ((3. 3.))))

(LOC (VALUE (PORT CXI (PART (IUH FA 2.) FOO)) »X) (7. (8. 7.) ((8. 6.) (7. 6.) (7. 7.) (8. 8.) (0. 4.) (0.

3.) (8. 7.))))

(LOC (VALUE (PORT CII (PART (IUH FA 3.) FOO)) ft!) (7. (2. 4.) ((2. 3.) (1. 3.) (1. 4.) (2. E.) (3. S.) (3.

4.) (2. 4.))))

(LOC (VALUE (PORT CII (PART (IUH FA 4.) FOO)) ft!) (1. «. 6.) ((5. 8.))))

(LOC (VALUE (PORT III (PART 0R1 (PART (IUH FA 1.) FOO))) fcl) (19. (4. B.) ((6. 4.) (4. 3.) (3. 3.) (2. 3.)

(2. 4.) (2. B.) (3. 6.) (4. 7.) (B. 7.) (6. 7.) (6. 8.) (6. B.) (4. 4.) (3. 4.) (3. B.) (4. 6.) (B. 6.)

(B. B.) (4. B.))))

(LOC (VALUE (PORT 112 (PART OKI (PART (IUH FA 1.) FOO))) H) (19. (0. 0.) ((8. 8.) (B. 7.) (4. 7.) (3. 7.)

(7. 3.) (7. 4.) (8. B.) (0. 2.) (1. 2.) (2. 2.) (2. 1.) (2. 0.) (B. 8.) (4. 8.) (8. 4.) (0. 1.) (1. 1.)

(1. 0.) (0. 0.))))

(LOC (VALUE (PORT 112 (PART AID2 (PART (IUH FA 1.) FOO))) ft» (19. (4. 0.) «1. 4.) (0. 3.) (8. 7.) (7.

7.) (7. 8.) (2. 0.) (3. 1.) (4. 2.) (B. 2.) (8. 2.) (2. 6.) (2. B.) (0. 4.) (8. 8.) (3. 0.) (4. 1.) (5.

1.) (1. B.) (4. 0.))))

(LOC (VALUE (PORT HI (PART X0R2 (PART (IUM FA 1.) FOO))) *X) IIL)

(LOC (VALUE (PORT OUT (PART AID2 (PART (IUM FA 1.) FOO))) »U (19. (4. 0.) ((1. 4.) (0. 3.) (8. 7.) (7.

7.) (7. 8.) (2. 0.) (3. 1.) (4. 2.) (B. 2.) (8. 2.) (2. 8.) (2. B.) (0. 4.) (8. 8.) (3. 0.) (4. 1.) <B.

1.) (1. B.) (4. 0.))))

(LOC (VALUB (PORT OUT (PART AID1 (PART (IUH FA 1.) FOO))) *U (19. (0. 0.) ((8. 8.) (B. 7.) (4. 7.) (3.

7.) (7. 3.) (7. 4.) (8. B.) (0. 2.) (1. 2.) (2. 2.) (2. 1.) (2. 0.) (B. 8.) (4. 8.) (8. 4.) (0. 1.) (1.

1.) (1. 0.) (0. 0.))))

(LOC (VALUB (PORT OUT (PART 0R1 (PART (IUH FA 1.) FOO)» »X) (19. (4. B.) ((B. 4.) (4. 3.) (3. 3.) (2. 3.)

(2. 4.) (2. B.) (3. 8.) (4. 7.) (B. 7.) (8. 7.) (8. 8.) (6. B.) (4. 4.) (3. 4.) (3. B.) (4. 8.) (B. 8.)

(B. B.) (4. 8.))))

(LOC (VALUE (PORT OUT (PART X0R2 (PART (IUH FA 1.) FOO))) »U IIL)

(LOC (VALUB (PORT OUT (PART X0R1 (PART (IUH PA 1.) FOO))) ft» (19. (4. B.) ((6. 4.) (4. 3.) (3. 3.) (2.

3.) (2. 4.) (3. B.) (3. 6.) (4. 7.) (B. 7.) (6. 7.) (8. 6.) (8. B.) (4. 4.) (3. 4.) (3. B.) (4. 6.) (S.

8.) (B. B.) (4. B.))))

(LOC (VALUE (PORT III (PART 0R1 (PART (IUH FA 2.) POO))) *X) (7. (4. 2.) ((4. 1.) (3. 1.) (3. 2.) (4. 3.)

(B. 3.) (6. 2.) (4. 2.))))

(LOC (VALUE (PORT 112 (PART 0R1 (PART (IUH FA 2.) FOO))) U) (7. (2. 3.) ((2. 2.) (1. 2.) (1. 3.) (2. 4.)

(3. 4.) (3. 3.) (2. 3.))))

198 APPENDIXE. ADDER EXAMPLE

(LOC (VALUE (PORT I« (PART AID2 (PART (TOM FA 2.) TOO))) «) (7. (4. 7.) ((4. 6.) (3. 6.) (3. 7.) (4. 8.)

(5. 8.) (S. 7.) (4. 7.))))

(LOC (VALUB (PORT III (PART X0R2 (PART (TOM PA 2.) FOO))) *X) IIL)

(LOC (VALUB (PORT OUT (PART AID2 (PART (TOM FA 2.) FOO») *X> (7. (7. 4.) ((7. 3.) (6. 3.) (6. 4.) (7. S.)

(8. S.) (8. 4.) (7. 4.))))

(LOC (VALUB (PORT OUT (PART 1191 (P«T (TOM FA 2.) FOO))) tt) (7. (2. 3.) ((2. 2.) (1. 2.) (1. 3.) (2. 4.)

(3. 4.) (3. 3.) (2. 3.))))

(LOC (VALUB (PORT OUT (PART OR1 (PART (TOM FA 2.) FOO))) «) (7. (4. 2.) ((4. 1.) (3. 1.) (3. 2.) (4. 3.)

(5. 3.) (B. 2.) (4. 2.))))

(LOC (VALUE (PORT OUT (PART X0R2 (PART (TOM FA 2.) FOO))) M) IIL)

(LOC (VALUB (PORT OUT (PART IOR1 (PART (TOM FA 2.) FOO))) «) (7. (1. 0.) ((6. 8.) (B. 8.) (0. 0.) (1. 1.)

(2. 1.) (2. 0.) (1. 0.))))

(LOC (VALUB (PORT III (PART 0R1 (PART (TOM FA 3.) FOO))) *I) (7. (B. B.) ((B. 4.) (4. 4.) (4. 6.) (B. 6.)

(6. 6.) (6. 6.) (B. B.))))

(LOC (VALUB (PORT 112 (PART 0R1 (PART (TOM FA 3.) FOO))) «) (7. (B. S.) ((6. 4.) (4. 4.) (4. S.) (B. 6.)

(6. 6.) (6. B.) (B. 6.))))

(LOC (VALUB (PORT 112 (PART AID2 (PART (TOM FA 3.) FOO))) tX) (7. (S. S.) ((B. 4.) (4. 4.) (4. 6.) (B. 6.)

(0. 6.) (0. E.) (B. 6.))))

(LOC (VALUB (PORT III (PART X0R2 (PART (TOM FA 3.) FOO))) *I) IIL)

(LOC (VALUB (PORT OUT (PART AID2 (PART (TOM FA 3.) FOO))) *X) (7. (B. B.) ((6. 4.) (4. 4.) (4. B.) (B. 6.)

(0. S.) (6. S.) (6. 6.))))

(LOC (VALUE (PORT OUT (PART AID1 (PART (TOM FA 3.) FOO))) *I> (7. (B. B.) ((B. 4.) (4. 4.) (4. 6.) (B. 6.)

(6. 6.) (6. B.) (B. B.))))

(LOC (VALUE (PORT OUT (PART 0R1 (PART (TOM FA 3.) FOO))) M) (7. (B. B.) ((6. 4.) (4. 4.) (4. B.) (B. 6.)

(8. 6.) (6. B.) (B. B.))))

(LOC (VALUB (PORT OUT (PART X0R2 (PART (TOM FA 3.) FOO))) *X) IIL)

(LOC (VALUB (PORT OUT (PART X0R1 (PART (TOM FA 3.) FOO))) K) (7. (B. S.) ((B. 4.) (4. 4.) (4. B.) (B. 8.)

(8. 6.) (6. B.) (B. B.))))

(LOC (VALUE (PORT III (PART 0R1 (PART (TOM FA 4.) FOO))) *X) (1. (B. 4.) ((B. 4.))))

(LOC (VALUB (PORT 112 (PART 0R1 (PART (TOM FA 4.) FOO))) tt) (1. (4. 4.) ((4. 4.))))

(LOC (VALUB (PORT 112 (PART AID2 (PART (TOM FA 4.) FOO))) *X) (1. (4. 4.) ((4. 4.))))

(LOC (VALUB (PORT III (PART X0R2 (PART (TOM FA 4.) FOO))) «) IIL)

(LOC (VALUB (PORT OUT (PART AID2 (PART (TOM FA 4.) FOO))) tX) (1. (6. B.) ((B. B.))))

(LOC (VALUE (PORT OUT (PART AIM (PART (TOM FA 4.) FOO))) *I) (1. (6. 4.) ((B. 4.))))

(LOC (VALUB (PORT OUT (PART 0R1 (PART (TOM FA 4.) FOO))) *X) (1. (4. 4.) ((4. 4.))))

(LOC (VALUE (PORT OUT (PART I0R2 (PART (TOM FA 4.) FOO))) tX) IIL)

(LOC (VALUE (PORT OUT (PART X0R1 (PART (TOM FA 4.) FOO))) *X) (1. (3. 4.) ((3. 4.))))

Bibliography

[1] G.A. Agha. Actors: A Model of Concurrent Computation in Distributed Sys-

tems. Technical Report 844, MIT AI Laboratory, March 1985.

[2] A. V. Aho, M. R. Garey, and J. D. Ullman. The Transitive Reduction of a

Directed Graph. SIAM Journal on Computing, 1(2):131-137, June 1972.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms.

Addison-Wesley Publishing Company, 1983.

[4] Bill Athas. Fine Grain Concurrent Computations. PhD thesis, Computer

Science Department, California Institute of Technology, 1987. Also published

as technical report 5242:TR:87.

[5] J. Backus. Can programming be liberated from the von Neumann style? A

functional style and its algebra of programs. Communications of the ACM,

21(8):613-641, August 1978.

[6] A. Barr and E. A. Feigenbaum, editors. The Handbook of Artificial Intelligence,

chapter 12, page 80. Volume 3, William Kauffman, Inc., Los Altos, California,

1982.

[7] A. Barr and E. A. Feigenbaum, editors. The Handbook of Artificial Intelligence,

chapter 2, page 39. Volume 1, William Kauffman, Inc., Los Altos, California,

1981.

199

BIBLIOGRAPHY
200

[8] L. Bic. A Data-Driven Model for Parallel Interpretation of Logic Programs.

In Proceedings of the International Conference on Fifth Generation Computer

Systems, pages 517-523, ICOT, 1984.

[9] P. Borgwardt. Parallel Prolog using Stack Segments on Shared-Memory Multi-

processors. In IEEE Logic Programming Conference, pages 2-11, IEEE, Febru-

ary 1984.

[10] Michael L. Campbell. Static Allocation for a Data Flow Multiprocessor.

In Proceedings of the 1985 International Conference on Parallel Processxng,

pages 511-517, IEEE, 1985.

[11] Martha J. Chamberlain and A.L. Davis. A Static Resource Allocation Method-

ology for a Dataflow Multiprocessor. Copies may be obtained from A.L. Davis

at Hewlett Packard Labs, 1501 Page Mill Rd., Bldg. 3U, Palo Alto, CA 94304.

[12] A. Ciepielewski and S. Haridi. A Formal Model for Or-ParaUel Execution of

Logic Programs. In Proceedings of the IFIP Congress, pages 299-305, IFIP,

1983.

[13] Wayne Citrin. Parallel Unification Scheduling in Prolog. 1985. Can be ob-

tained from the Aquarius group, 512 Evans Hall, Berkeley, CA 94720.

[14] K L. Clark and S. Gregory. A Relational Language for Parallel Programming.

In Proceedings of the Conference on Funcional Programming and Computer

Architecture, pages 171-178, Association for Computing Machinery, October

1981.

[15] John S. Conery. The And/Or Process Model for Parallel Interpretation of Logic

Programs. PhD thesis, University of California, Irvine, 1983.

[16] John S. Conery and Dennis F. Kibler. AND Parallelism in Logic Programs.

In Proceedings of the International Joint Conference on Artificial Intelligence,

pages 539-543, 1983.

201
BIBLIOGRAPHY

[17] John S. Conery and Dennis F. Kibler. Parallel Interpretation of Logic Pro-

grams. In Proceedings of the Conference on Functional Programming and

Computer Architecture, pages 163-170, Association for Computing Machinery,

October 1981.

[18] A. L. Davis and S. V. Robison. The Architecture of the FAIM-1 Symbolic

Multiprocessing System. In Proceedings ofIJCAI-85, Morgan Kaufmann Pub-

lishers, Inc., August 1985.

[19] D. DeGroot. Restricted And-Parallelism. In Proceedings of the International

Conference on Fifth Generation Computer Systems, pages 471-478, ICOT,

Japan,1984.

[20] C. Dwork, P. C. Kanellakis, and J. C. Mitchell. On the Sequential Nature of

Unification. The Journal of Logic Programming, l(l):35-50, June 1984.

[21] J. Finger and M. Genesereth. Residue: A Deductive Approach to Design Syn-

thesis. Technical Report HPP-85-1, Heuristic Programming Project, Computer

Science Department, Stanford University, January 1985.

[22] M. J. Flynn. Very High-Speed Computing Systems. Proceedings of IEEE,

54:1901-1909, December 1966.

[23] Charles L. Forgy. OPS5 User's Manual. Technical Report CMU-CS-81-135,

Computer Science Department, Carnegie Mellon University, 1981.

[24] Gordon Foyster. Helios: User's Manual. Technical Report HPP-84-34, Heuris-

tic Programming Project, Computer Science Department, Stanford University,

August 1984.

[25] K. Furukawa, K. Nitta, and Y. Matsumoto. Prolog Interpreter Based on Con-

current Programming. In Proceedings of the First International Logic Pro-

gramming Conference, pages 38-44, 1982.

202 BIBLIOGRAPHY

[26] R.P. Gabriel and J. McCarthy. Queue-based Multi-processing Lisp. In 1984

ACM Symposium on Lisp and Functional Programming, pages 25-44, August

1984.

[27] Michael R. Garey and David S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman and Company, San

Francisco, 1979.

[28] M. R. Genesereth. The Use of Design Descriptions in Automated Diagno-

sis. Technical Report HPP-81-20, Heuristic Programming Project, Computer

Science Department, Stanford University, 1984.

[29] R. L. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM Journal

of Applied Mathematics, 17(2):416-429, March 1969.

[30] S. Gregory. Design, Application and Implementation of a Parallel Logic Pro-

gramming Language. PhD thesis, Imperial College of Science and Technology,

1985.

[31] R. Halstead. Multilisp: A Language for Concurrent Symbolic Computation.

ACM Transactions on Programming Languages and Systems, 7(4):501-538, Oc-

tober 1985.

[32] R. Halstead. Parallel symbolic computing. IEEE Computer, 19(8):35-43, Au-

gust 1986.

[33] Haridi, Seif and Ciepielewski, Andrzej. An Or-Parallel Token Machine. Tech-

nical Report TRITA-CS-8303, Department of Telecommunication Systems -

Computer Systems, The Royal Institute of Technology, Sweden, May 1983.

[34] M.V. Hermenegildo. Relating Goal Scheduling, Precedence, and Memory Man-

agement in AND-parallel Execution of Logic Programs. In Proceedings of the

Fourth International Conference on Logic Programming, 1987.

[35] Hillis, W. Daniel. The Connection Machine. A.I. Memo 646, Artificial Intelli-

gence Laboratory, M.I.T., September 1981. Revised report under preparation.

203
BIBLIOGRAPHY

[36] D.A. Hornig. Automatic Partitioning and Scheduling on a Network of Personal

Computers. PhD thesis, Department of Computer Science, Carnegie Mellon

University, 1984. Also available as technical report CMU-CS-84-165.

[37] B. J. Lageweg, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Com-

puter Aided Complexity Classification of Deterministic Scheduling Problems.

Technical Report BW 138/81, Mathematisch Centrum, Amsterdam, 1981.

[38] B. W. Lampson, editor. Distributed Systems. Lecture Notes in Computer

Science, Springer-Verlag, 1981.

[39] E. L. Lawler, J. K. Lenstra, and A. H. G. Rinooy Kan. Recent Developments in

Deterministic Scheduling. Technical Report BW 146/81, Mathematisch Cen-

trum, Amsterdam, 1982.

[40] P.P. Li. A Parallel Execution Model for Logic Programming. PhD thesis,

Computer Science Department, California Institute of Technology, 1986. Also

published as technical report 5227:TR:86.

[41] G. Lindstrom and P. Panangaden. Stream-Based Execution of Logic Programs.

In IEEE Logic Programming Conference, pages 168-176, IEEE, February 1984.

[42] Malone, T. W., R. E. Fikes, and M. T. Howard. Enterprise: A Market-like Task

Scheduler for Distributed Computing Environments. Working Paper, Cognitive

and Instructional Sciences Group, Xerox Palo Alto Research Center, Palo Alto,

California, October 1983.

[43] E. W. Mayr. Well Structured Parallel Programs Are Not Easier to Schedule.

Report No. STAN-CS-81-880, Stanford University, September 1981.

[44] Moon, David A. Architecture of the Symbolics 3600. In The Proceedings of the

12th Annual International Symposium on Computer Architecture, pages 76-83,

1985.

[45] T. Moto-oka and H. S. Stone. Fifth Generation Computer Systems: A Japanese

Project. Computer, 17(3):6-13, March 1984.

204 BIBLIOGRAPHY

[46] Multimax Technical Summary. Encore Computer Corporation, 257 Cedar Hill

Street, Marlborough, MA 01752.

[47] B.J. Nelson. Remote Procedure Call PhD thesis, Department of Computer

Science, Carnegie Mellon University, 1981.

[48] N. J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing Company,

1980.

[49] Kemal Oflazer. Partitioning in Parallel Processing of Production Systems.

In Proceedings of the International Conference on Parallel Processing, IEEE,

1984.

[50] Kemal Oflazer. Partitioning in Parallel Processing of Production Systems.

PhD thesis, Carnegie Mellon University, March 1987.

[51] C.H. Papadimitriou and K. SteigUtz. Combinatorial Optimization: Algorithms

and Complexity. Prentice-Hall, Inc, 1982.

[52] S. Pappert. Mindstorms: Children, Computers, and Powerful Ideas. Basic

Books, 1980.

[53] Ian Robinson. A Prolog Processor Based on a Pattern Matching Memory

Device. In Ehud Shapiro, editor, Proceedings of the Third International Con-

ference on Logic Programming, pages 172-179, Springer-Verlag, July 1986.

[54] Stuart Russell. The Compleat Guide to MRS. Technical Report KSL-85-12,

Knowledge Systems Laboratory, Computer Science Department, Stanford Uni-

versity, June 1985.

[55] Vivek Sarkar. Partitioning and Scheduling Parallel Programs for Execution on

Multiprocessors. PhD thesis, Electrical Engineering Department, Stanford Uni-

versity, April 1987. Also available as Computer Systems Laboratory Technical

Report No. CSL-TR-87-328.

BIBLIOGRAPHY 205

[56] C. L. Seitz. The Cosmic Cube. Communications of the ACM, 28(l):22-33,

1985.

[57] E. Y. Shapiro. A Subset of Concurrent Prolog and Its Interpreter. Technical

Report TR-003, ICOT, Japan, January 1983.

[58] Ehud Shapiro. Systolic programming: a paradigm of parallel processing. In

Proceedings of the International Conference on Fifth Generation Computer

Systems, ICOT, 1984.

[59] N. Singh. Exploiting Design Morphology to Manage Complexity. PhD thesis,

Electrical Engineering Department, Stanford University, August 1985.

[60] N. Singh. MARS: A Multiple Abstraction Rule-Based Simulator. Technical

Report HPP-83-43, Heuristic Programming Project, Computer Science De-

partment, Stanford University, 1983.

[61] Vineet Singh and Michael R. Genesereth. A Variable Supply Model for Dis-

tributing Deductions. In Proceedings of IJCAI-85, Morgan Kaufmann Pub-

lishers Inc., August 1985.

[62] Vineet Singh and Michael R. Genesereth. PM: A Parallel Execution Model

for Backward-Chaining Deductions. Future Computing Systems, l(3):271-308,

1986. Also available as KSL Report KSL-85-18, May 1985, Knowledge Systems

Laboratory, Computer Science Department, Stanford University.

[63] Vineet Singh and Michael R. Genesereth. PM: A Parallel Execution Model for

Backward-Chaining Deductions. KSL Report KSL-85-18, Knowledge Systems

Laboratory, Computer Science Department, Stanford University, May 1985.

[64] D. E. Smith and M. R. Genesereth. Ordering Conjunctive Queries. Artificial

Intelligence, 26(2):171-215, October 1985.

[65] Smith, D. E. Controlling Inference. PhD thesis, Department of Computer

Science, Stanford University, August 1985.

206 BIBLIOGRAPHY

[66] Smith, R. G. The Contract Net Protocol: High-Level Communication and

Control in a Distributed Problem Solver. IEEE Transactions on Computers,

C-29(12):1104-1113, December 1980.

[67] K. S. Stevens. 1985. Private communication.

[68] K. S. Stevens, S. V. Robison, and A. L. Davis. The Post Office-

Communication Support for Distributed Ensemble Architectures. In Proceed-

ings of the 6th International Conference on Distributed Computing Systems,

pages 160-166, IEEE Computer Society, May 1986.

[69] Richard Treitel. Sequentialization of Logic Programs. PhD thesis, Stanford

University, September 1986. Also available as Report No. STAN-CS-86-1135,

Department of Computer Science, Stanford University, Stanford, CA 94305.

[70] P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins. Data-Driven and

Demand-Driven Computer Architecture. Computing Surveys, 14(1):93-143,

March 1982.

[71] K. Ueda. Guarded Horn Clauses. Technical Report TR-103, ICOT, Tokyo,

1985.

[72] D.H.D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI

International, AI Center, Computer Science and Technology Division, 1983.

[73] D.H.D. Warren. Implementing Prolog-Compiling Predicate Logic Programs.

Research Reports 39 and 40, Department of Artificial Intelligence, University

of Edinburgh, 1977.

[74] H. Yasuura. On Parallel Computational Complexity of Unification. In Pro-

ceedings of International Conference on Fifth Generation Computers, Tokyo,

Japan, November 1984.

Reproduced by NTIS

ü = ü 0)

10« i»

4-i Q-OQ
0£.£ü

T3 c ® C

z5.2.E

National Technical Information Service
Springfield, VA 22161

This report was printed specifically for your order
from nearly 3 million titles available in our collection.

For economy and efficiency, NTIS does not maintain stock of its vast
collection of technical reports. Rather, most documents are printed for
each order. Documents that are not in electronic format are reproduced
from master archival copies and are the best possible reproductions
available. If you have any questions concerning this document or any
order you have placed with NTIS, please call our Customer Service
Department at (703) 487-4660.

About NTIS
NTIS collects scientific, technical, engineering, and business related
information — then organizes, maintains, and disseminates that
information in a variety of formats — from microfiche to online services.
The NTIS collection of nearly 3 million titles includes reports describing
research conducted or sponsored by federal agencies and their
contractors; statistical and business information; U.S. military
publications; audiovisual products; computer software and electronic
databases developed by federal agencies; training tools; and technical
reports prepared by research organizations worldwide. Approximately
100,000 new titles are added and indexed into the NTIS collection
annually.

For more information about NTIS products and services, call NTIS
at (703) 487-4650 and request the free NTIS Catalog of Products

and Services, PR-827LPG, or visit the NTIS Web site
http://www.ntis.gov.

NTIS
Your indispensable resource for government-sponsored

information—U.S. and worldwide

